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Abstract

We investigate approximations of the local learning coefficient (LLC), a
measure of the model complexity of neural networks, by using a second-
order Taylor series expansion of the loss function. We calculate these ap-
proximations for a variety of toy models.

1 Introduction

1.1 Statement of Problem

Interpretability aims to identify the algorithms implemented within neural networks by
analyzing their parameters and activations. A challenge in interpretability is that neural
networks are degenerate: there are many different choices of parameters that implement the
same internal algorithm Wei et al. (2023); Watanabe (2009). Multiple parameter configu-
rations can often implement equivalent internal algorithms.
Singular Learning Theory (SLT) quantifies the degeneracy of the loss landscape around a
parameter point using the local learning coefficient (LLC). Mathematically, the LLC mea-
sures the basin volume of the loss landscape around a given point. Intuitively, this measures
the degrees of freedom we have for perturbing the weight in the network’s parameter space
without effecting the model’s behavior.
The LLC provides information about the complexity of the internal algorithm used by the
model, and subsequently, the models ability to generalize on new tasks Bushnaq et al. (2024).
Direct computations of the LLC involve an integral that is intractable in practice. Numeric
sampling has been used as an attempt to calculate this integral Furman & Lau (2024)
Hoogland et al. (2024), though the absolute scale of the resulting LLC values seem to be
small 1.
In this paper, we introduce an LLC estimation derived from a Taylor series expansion of the
loss function. For a variety of models, we calculate this Taylor series loss approximation up
to second-order.

1.2 Background

1.2.1 Power expansion of the behavioral loss

We consider a power expansion of a loss L(θ|X) in the parameters θ, over a finite dataset
X, at some point in parameter space θ∗. Writing this to second order, we have:

L(θ|X) = L(θ∗)+ ∂L(θ)
∂θ

∣∣∣∣
θ=θ∗

(θ−θ∗)+ 1
2(θ−θ∗)T ∂2L(θ)

∂θ2

∣∣∣∣
θ=θ∗

(θ−θ∗)+O(||θ−θ∗||3) . (1)

Where
H(θ∗) := ∂2L(θ)

∂θ2

∣∣∣∣
θ=θ∗

(2)

is the network Hessian.
Our chosen loss at a data point x is some convex function2 L(y(x), f lfinal(x, θ)) that depends
on the network outputs f lfinal(x, θ∗) at the final layer lfinal, as well as the correct output
labels y(x).

L(θ|X) = 1
|X|

∑
x∈X

L(y(x), f lfinal(x, θ)) . (3)

Typically, we might want the dataset to be the training dataset X, because that is the
distribution over which the network’s internals were built. So, presumably, all the coherent
mechanistic structure in the network will be doing something on some training data points.

1From correspondence with the authors
2Such as mean squared error or cross entropy loss.

2



In order to ensure that the network is at a minimum of loss (such that the 0th and 1st order
terms of the Taylor expansion are in fact zero, meaning that the Hessian is the first term
which can contribute to non-free parameters in the Taylor expansion), we consider not the
regular training loss, but the behavioural loss of the network (relative to some ‘base’ network
evaluated on the training data), which rather than comparing outputs to the true labels,
instead measures the difference in output of a given network to the output from the base
network - see Bushnaq et al. (2024) for a full exposition. The behavioral loss is given as:

LB(θ|θ∗, D) = 1
n

∑
x∈D

||fθ(x) − fθ∗(x)||2

To be clear, we do not train with this behavioral loss, but use it to estimate the LLC only.
Choosing the base network to be the current network of interest, we ensure that our current
model is at the global minimum of this behavioural loss.
Therefore, the labels y(x) we’re looking for aren’t necessarily the training labels. Instead,
we set y(x) = f lfinal(x, θ∗), the behavioural loss Bushnaq et al. (2024). We do this because
we might be interested in how large a neighborhood around θ∗ implements approximately
the same map f lfinal(x, θ∗) over the data.
For this project, the behavioral loss is practically convenient, as it ensures that we are at
an optimum with y(x) = f lfinal(x) for all data points. This makes the terms in our power
series easier and cheaper to calculate. In the next sections, we’ll see how that works.

1.2.2 Hessian

We now consider a rewritten form of the Hessian. Substituting in our choice of the behavioral
loss function and applying the chain rule gives:

∂2L(θ)
∂θi∂θj

∣∣∣∣
θ=θ∗

=
∑

x,k,k′

∂2L(y(x), f lfinal(x))
∂f lfinal

k (x)∂f lfinal
k′ (x)

∂f lfinal
k (x, θ)

∂θi

∂f lfinal
k′ (x, θ)

∂θj

∣∣∣∣∣
θ=θ∗

+
∑
x,k

∂L(y(x), f lfinal(x))
∂f lfinal

k (x)
∂2f lfinal

k (x, θ)
∂θi∂θj

∣∣∣∣∣
θ=θ∗

.

(4)

If θ∗ is a perfect optimum over the dataset such that y(x) = f lfinal(x, θ∗) for all x,
∂L(y(x),f lfinal (x))

∂f
lfinal
k

(x)
= 0 for all x, because L(y(x), f lfinal(x)) is convex. So at a perfect opti-

mum, the second term vanishes, leaving us with:
∂2L(θ)
∂θi∂θj

∣∣∣∣
θ=θ∗

=
∑

x,k,k′

∂2L(y(x), f lfinal(x))
∂f lfinal

k (x)∂f lfinal
k′ (x)

∂f lfinal
k (x, θ)

∂θi

∂f lfinal
k′ (x, θ)

∂θj

∣∣∣∣∣
θ=θ∗

(5)

For a square loss term, L(y(x), f lfinal(x)) =
(
f lfinal(x) − y(x)

)2, this is

∂2L(θ)
∂θi∂θj

∣∣∣∣
θ=θ∗

=2
∑

x,k,k′

δk,k′
∂f lfinal

k (x, θ)
∂θi

∂f lfinal
k′ (x, θ)

∂θj

∣∣∣∣∣
θ=θ∗

= 2
∑
x,k

∂f lfinal
k (x, θ)

∂θi

∂f lfinal
k (x, θ)

∂θj

∣∣∣∣∣
θ=θ∗

.

(6)
So, to calculate the Hessian, we need to get the gradients of the network outputs f lfinal

k (x)
with respect to the parameters θi over a (representative sample of) the dataset we care
about.

1.3 The Hessian rank as an upper and lower bound on the LLC

In a network with d parameters, the network’s local learning coefficient is bounded by
d1
2 ≤ λ ≤ d

2 , where d1 is the rank of the Hessian Watanabe (2009). As proven in Bushnaq
(2024), the rank of the Hessian also gives a tight upper bound λ ≤ d1

2 + d−d1
4 , where d−d1 is

the dimension of the Hessian kernel, meaning the number of zero eigenvalues it has. Putting
these together, the dimension of the Hessian d1 bounds the learning coefficient as

d1

2 ≤ λ ≤ d1

2 + d − d1

4 .
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We are interested in the width of the interval [ d1
2 , d1

2 + d−d1
4 ]. The smaller the width, the

better the approximation of the LLC provided by the Hessian rank. Since this width is
determined by the number of zero eigenvalues d − d1 of the Hessian, this is the quantity we
investigate in the subsequent sections for some example networks.

2 Methodology

2.1 Toy models

We investigate the Hessian approximation of the LLC by estimating the number of zero
eigenvalues for the following toy models:

• Modular addition transformer
• MNIST MLP
• Matrix factorization MLP

For details on model architectures and training tasks, see Appendix A

2.2 When is an eigenvalue zero?

Since we’re making approximations of these Hessian eigenvalues, our approximations are
rarely equal to exactly zero. Therefore, we need to use a "zero eigenvalue cutoff threshold"
that specifies when an eigenvalue should be considered a zero eigenvalue.
Each model has it’s own scale, range, and distribution of eigenvalues, so the zero eigenvalue
cutoff should be unique for each model.
However, in order to make comparisons across various models, this zero-eigenvalue cutoff
threshold can alternatively be specified by determining an accuracy cutoff, for which, if
all zero-eigenvalue eigenvectors are ablated from the model, the test accuracy will remain
above.
To facilitate comparisons across different models, we can alternatively define the zero-
eigenvalue cutoff threshold using an accuracy cutoff. This approach involves ablating the
maximum number of bottom eigenvectors one-by-one, up until the model’s accuracy drops
to a specified level (say, 99.5% of the original accuracy). 3

Because there isn’t an objectively correct zero-eigenvalue cutoff, nor zero-eigenvalue accuracy
cutoff, our LLC approximation method is best viewed as calculating the LLC with respect
to a particular zero-eigenvalue cutoff, as opposed to determining a single, correct LLC for
the model.

2.3 Calculating zero eigenvectors

In order to efficiently compute the zero eigenvalue directions of the Hessian, we use the
Lanczos algorithm. Lanczos algorithm utilizes properties of Krylov subspaces in order to
efficiently compute the eigenvectors in order of increasing/decreasing eigenvalue magnitude.
The full Hessian is never explicitly computed or stored. The storage requirements are the k
Arnoldi basis vectors of size N , so O(Nk). The compute requirements are k matrix-vector
multiplications, O(Nk2) and for orthogonalization O(Nk).

3 Results

We now present the results of computationally determining the number of zero eigenvalues
for various toy models with respect to a fixed training accuracy cutoff, viz. 99.5% of the
original training accuracy. Model performance was measured by projecting the original

3Equivalently, one could project the model into a basis comprised of the top eigenvectors, until
the model reaches that particular training accuracy. In our case, this was more computationally
efficient because it relies on calculating top, rather than bottom eigenvectors.

4



(trained) model onto the subspace of k largest-eigenvalue eigenvectors, with progressively
larger k, until the threshold was reached or we ran out of compute resources to calculate
additional top eigenvectors.

3.1 Modular addition transformer

Figure 1 shows the accuracy of the modular addition transformer model when projected onto
the subspace spanned by the top k largest-eigenvalue eigenvectors. The training accuracy
threshold is reached at k = 1032, as shown in Figure 2. Hence, we conclude that this model
has 86,197 - 1,032 = 85,165 zero eigenvalues.
It is unclear why the accuracy (both training and test) remains relatively flat for the first
more than 900 eigenvectors and then rises sharply at around k = 1, 000. This may require
further investigation. For more details on the performance of the original and projected
models, see Table 1.

Figure 1: Modular addition transformer: accuracy when projected into top k eigenvectors

Figure 2: Modular addition transformer: accuracy threshold reached for k = 1032.

3.2 MNIST MLP

Figure 3 shows the accuracy of the MNIST MLP model when projected onto the subspace
spanned by the top k largest-eigenvalue eigenvectors. As can be seen, dAccuracy

dk tends to near
zero as k reaches 6,000. Beyond this point, the marginal improvement in accuracy (both
training and test) by increasing k is very small. Up to k = 8, 000, the accuracy threshold
is not reached. Consequently, we are only able to conclude that the number of non-zero
eigenvalues for this model is at least 8,000. Conversely, the number of zero eigenvalues is
at most 42,310 - 8,000 = 34,310. For a comparative performance of the original versus
projected model see Table 2. (Due to time and resource constraints, we decided to only
compute 8,000 eigenvectors.)
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Original model dimension 86,197
Number of eigenvectors computed 1,041
Accuracy cutoff reached at k 1,032

Original accuracy on training set 100.00%
Final accuracy on training set 99.72%
Percentage of original training accuracy achieved 99.72%

Original accuracy on test set 100.00%
Final accuracy on test set 98.72%
Percentage of original test accuracy achieved 98.72%

Table 1: Modular addition transformer: original vs. projected model performance

Figure 3: MNIST MLP: accuracy when projected into top k eigenvectors

3.3 Matrix factorization MLP

It is worth noting that zero-eigenvalue cutoffs can be defined in terms of metrics other than
accuracy. Here, we use the Mean Squared Error (MSE) to define a zero-eigenvalue cutoff
for the matrix factorization task.
Figure 4 shows the mean squared error of the matrix factorization mlp model on the training
dataset when projected onto the subspace spanned by the top k largest-eigenvalue eigenvec-
tors of the Hessian. The original model achieved 0.0 MSE on the training dataset. While
the projected model does not achieve 0.0 MSE even after including 700 eigenvectors, the
MSE curve does become flat at 0.011 after k = 400. This would suggest that the choosing
a cutoff of ≈ 0.011 would give a zero-eigenvalue count of 400. This matches the number of
zero-eigenvalues calculated analytically, viz. (l − 1) · n2 = 1 · 202 = 400 (see Appendix A for
details).

Original model dimension 42,310
Number of eigenvectors computed 8,000
Accuracy cutoff reached at k n/a

Original accuracy on training set 98.74%
Final accuracy on training set 95.69%
Percentage of original training accuracy achieved 96.91%

Original accuracy on test set 97.20%
Final accuracy on test set 94.63%
Percentage of original test accuracy achieved 97.35%

Table 2: MNIST MLP: original vs. projected model performance
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Figure 4: Matrix Factorization MLP: MSE when projected into top k eigenvectors

Original model dimension 800
Number of eigenvectors computed 700
MSE cutoff reached at k 400

Original MSE on training set 0.000
Final MSE on training set 0.011

Table 3: Matrix Factorization MLP: Original vs. projected model performance

3.4 Summary of results

When requiring a 99.5% accuracy threshold for zero-eigenvalue ablation, we get the following
bounds on the LLC (Table 4):

d1

2 ≤ λ ≤ d1

2 + d − d1

4

Model Bound
Modular Addition Transformer 516 ≤ λ ≤ 21, 807.25

MNIST MLP 4, 000 ≤ λ ≤ 29, 732.5
Matrix Factorization MLP λ = 400

Table 4: Summary of successful LLC bounds

Note that the MNIST MLP bound is based on the computation of a limited number of
eigenvectors (viz. 8,000). Computing more eigenvectors will allow us to place a tighter
bound on the LLC for this model.

4 Conclusion

Hessian rank provides useful upper and lower bounds for the LLC. This approach offers a
computationally feasible method for estimating model complexity across different architec-
tures and tasks. Our findings revealed significant variations in the number of zero eigenvalues
across different models.
The accuracy cutoff approach for determining zero eigenvalues allowed for meaningful com-
parisons between models. Notably, we observed a sharp increase in accuracy at a specific
number of eigenvectors for some models, such as the modular addition transformer, suggest-
ing potential critical thresholds in the model’s parameter space.
While our study provides valuable insights into neural network complexity, it also has limi-
tations.
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Computational constraints prevented the calculation of all eigenvectors for larger models.
Additionally, the choice of accuracy cutoff threshold introduces some subjectivity in deter-
mining zero eigenvalues.
Our team is currently applying this LLC estimation to a convolutional neural network (CNN)
trained on CIFAR 10 image data. The team is also working on extending this power series
expansion to 4th order terms, which may provide tighter bounds on the LLC estimation,
and lend insight into the degree to which Hessian zero-eigenvectors are interacting at higher
orders.
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A Toy Model Descriptions

A.1 MNIST mlp

The MNIST dataset LeCun et al. (1998) is a well-studied problem in ML, involving classi-
fication of a dataset of hand-drawn numeric digits. We train a dense feed-forward neural
network with 2 hidden layers of width 50 and ReLU activation function. The network was
trained for 10 epochs, achieving a cross-entropy train loss of 0.016 and test loss of 0.246.

A.2 Modular addition transformer

Given a dataset consisting of pairs of numbers (xi1, xi2) both less than some prime p, labelled
by their sum modulo p, yi = (xi1 +xi2) mod p, a network is trained to predict this sum-mod-
p. The networks first embed each of the two numbers as vectors, before concatenating these
vectors then applying a single hidden layer with ReLU activations, and finally mapping to p
output numbers. The networks trained are in general overparametrised (in that they have
more parameters than number of training samples) and achieve a perfect accuracy in both
training and validation datasets. This setup, described in Power et al. (2022), is commonly
used to study grokking, although this feature is not required for our studies.
The model used in our analysis had p = 53, with inputs processed through a 53 × 128
embedding layer, followed by the concatenation of the embeddings processed through a
ReLU activated 256 × 256 hidden layer, followed by a 256 × 53 output layer. Initialization:
bias zero, weights with Xavier

A.3 Matrix factorisation mlp

Given an unknown full-rank n × n matrix A, a (known) collection of n linearly independent
vectors xi , and (known) vectors yi = Axi , we want to learn the matrix A. This is of course
a trivial problem if we can invert A, but can provide a useful example of free directions in
parameter space. In particular, we create and train a network with l hidden layers each with
n neurons and no bias, thus effectively creating a network whose parameters are l matrices
W1, ..., Wl, having ln2 parameters but where (l−1)n2 of these are expected to be redundant.
For small n, we can calculate the Hessian for different values of l and determine how many
eigenvalues correspond to ‘free’ directions. For our analysis, we chose n = 20 and l = 2.
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