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Introduction: Flag valuations and Okounkov Bodies

We work over C. Let X be a variety of dim d .

Given a flag
F = {X = Xd ⊇ · · · ⊇ X0}

where Xi is a Cartier divisor on Xi+1 we consider

νF : K (X ) −→ Rd

f 7−→ (ordXd−1
(f ), ordXd−2

(f̃1), . . . , ordX0(f̃d)).

This is the Flag Valuation of F .

Moreover, if we have a big divisor E ⊆ X we can define

∆F (E ) =
⋃
n≥1

{
ν(f )

n

∣∣∣∣ f ∈ H0(nE ) \ {0}
}
.

This is the Okounkov Body of E with respect to F .
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Introduction: Flag valuations and Okounkov Bodies

Example: X = P2 with coordinates [x : y : z ] and E = V (z). Then H0(nE )
corresponds to

{p(x , y) ∈ C[x , y ] | deg(p) ≤ n}

If F corresponds to the x axis followed by the origin, then

At each step we compute all the values of H0(nD) and normalize. The Okoukov
body corresponds to the closure of the union of these points.



Introduction: Flag valuations and Okounkov Bodies

The geometric properties of ∆F (E ) are linked to the properties of E . For
example:

Theorem (Lazarfeld-Mustata 08’, Kaveh-Khovanskii 09’)

1 dim∆F (E ) = Iitaka. dim(E )

2 If E is ample. Leading coefficient of HE = Vol(∆F (E ))

This statement gives us plenty of freedom to choose F .

→ What can we say about the map F 7→ ∆F (E )?

→ Is it continuous?

For this kind of questions it is convenient to generalize the definition of
Okounkov Body to an arbitrary valuation ν with values in Rd .
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Variation of Okounkov Bodies

Understanding ∆ν(E ) as ν changes is an open project with many challenges.

1 Find the right setting for the variation: Spaces of Valuations

2 Understand the continuity: Mutations

3 Find the hidden information: Canonical Measures

In the following we will describe some developments in the direction of questions
1 and 2.
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What can be the domain of the map ν 7→ ∆ν(E )?

Riemann-Zariski space

Huber Analytification (Adic Spaces)

Berkovich Analytification

The valuative tree
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Monomial Valuations

Consider X = A2 = Spec C[x , y ] and fix α, β ∈ R≥0. Then, the map

να,β : C[x , y ] −→ R∑
i,j≥0

aijx
iy j 7−→ min{iα+ jβ | aij ̸= 0}

extends to a valuation in K (X ). We cal this a Monomial valuation.



Quasi-monomial valuations

Let X be a variety and D =
∑r

i=1 Di a SNC divisor.

D1D2

D3

X

We can take local equations for each Di to define monomial-like valuations.

Example: If X is a surface, D1 = V (x) and D2 = V (y) locally around their
intersection p. Then, by the transversality

ÔX ,p
∼= C[[x , y ]].

So, given α, β ∈ R≥0 we can consider να,β defined by

να,β

∑
ij

aijx
iy j

 := min{iα+ jβ | aij ̸= 0}.

M (D) := set of all quasi-monomial
valuations w.r.t D.
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ÔX ,p
∼= C[[x , y ]].

So, given α, β ∈ R≥0 we can consider να,β defined by

να,β

∑
ij

aijx
iy j

 := min{iα+ jβ | aij ̸= 0}.

M (D) := set of all quasi-monomial
valuations w.r.t D.



Quasi-monomial valuations

Let X be a variety and D =
∑r

i=1 Di a SNC divisor.

D1D2

D3

X

We can take local equations for each Di to define monomial-like valuations.

Example: If X is a surface, D1 = V (x) and D2 = V (y) locally around their
intersection p. Then, by the transversality
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Dual Cone Complex

Given an SNC divisor D =
∑r

i=1 Di , we can construct a cone complex by

1 Taking one ray for each Di .

2 Taking one face for each intersection of D ′
i s.

Σ(D) = Dual cone complex of D

Example:
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Monomial Valuations Geometrically

Putting coordinates on each cone of Σ(D) gives the equality

M (D) ∼= Σ(D)

So geometrically, the monomial valuations defined in terms of D with weights in
R≥0 are parametrized by the dual complex!

Now, by changing the weights to (Rk)≥lex0 with its lexicographic order, we can
construct monomial valuations of higher rank. Let us denote by M k(D) the set
of all such valuations.

→ Is there any way to relate M k(D) geometrically to the dual cone complex
Σ(D)?

Answer: Yes, they are given by tangent directions in Σ(D).
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Tropicalization of rational functions

Given f ∈ K (X ) we define its tropicalization with respect to D as the map

trop(f ) : Σ(D) −→ R
p 7−→ νp(f ).

In terms of coordinates, if f =
∑
ij

aijx
iy j then

trop(f )(x , y) = min
i,j

{ix + jy | aij ̸= 0}.

The map trop(f ) is continuous, rational and piecewise linear.

trop(f )

Theorem 1. Approximation Theorem (Amini - I ’21)

Any continuous, rational, piecewise linear function in Σ(D) is the tropicalization
of some rational function.
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Tangent Cone Bundles

Given a polyhedral complex Σ, we define its tangent cone bundle of order k,
denoted by TCk Σ as the set of all elements (x ;w1, . . . ,wk) such that:

1 x ∈ Σ

2

3

4
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Tangent Cone Bundles

Given a polyhedral complex Σ, we define its tangent cone bundle of order k,
denoted by TCk Σ as the set of all elements (x ;w1, . . . ,wk) such that:

1 x ∈ Σ

2 x + εw1 ∈ Σ for ε > 0 small.

3 x + ε1w1 + ε2w2 ∈ Σ for ε1 > 0 small and ε2 > 0 small w.r.t ε2.

4 ....

not belongs to TC 2Σ

not belongs to TC 2Σ



Partial Derivative Operators

With respect to each element (x ;w) ∈ TCk Σ(D), we consider a partial
derivative operator acting on tropical functions over Σ(D). It is defined
inductively as follows

Dw1F (x) = lim
h→0

F (x + hw1)− F (x)

h

Dw1,w2F (x) = lim
h→0

Dw1+hw2F (x)− Dw2F (x)

h
...

Dw1,...,wk
F (x) = lim

h→0

Dw1,...,wk−1+hwk
F (x)− Dw1,...,wk−1

F (x)

h
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Duality Theorem

Theorem 2, Duality Theorem (Amini - I ’21)

There is an isomorphism of bundles over M (D) ≃ Σ(D)

M k(D) TCk−1 Σ(D)

M (D) Σ(D)

≃

≃

where (x ;w) ∈ TCk−1 Σ(D) corresponds to the valuation

ν(x ;w)(f ) = (trop(f )(x),Dw1 trop(f )(x), . . . ,Dw trop(f )(x))

which is a monomial valuation with respect to the weights

(x ;w)T = (α1, . . . , αk) ∈ (Rk)≥lex0.
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Topology on TC k−1Σ(D)

If we come back to the original problem, the map

∆• : TC k−1Σ(D) −→ BC(Rk)

(x ;w) 7−→ ∆ν(x ;w)

is not continuous with the euclidean topology. This is understandable because
the maps f 7−→ ν(x ;w)(f ) are not continuous.

We introduce the tropical topology as the weakest topology that makes all the
maps

TCk−1 Σ(D) −→ Rk

(x ,w) 7−→ ν(x ;w)(f )

continuous, when Rk is endowed with its euclidean topology.
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Topology on TC k−1Σ(D)

Using the approximation theorem we can understand the tropical topology on
TC k−1Σ(D):

The tropical topology is finer than the euclidean topology.

It is not locally compact nor second countable. It is separable and first
countable.

A set is dense in the tropical topology if and only if it is dense in the
euclidean topology.

The local basis of neighborhoods of an irrational point is the same in the
tropical and euclidean topology.
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Variation of Okounkov Bodies

Theorem 3 I. Amini

The map

∆: T̊C
d−1

Σ(D) −→ BC(Rd)

ν 7−→ ∆ν :=
⋃
n≥0

{
ν(f )

n
| f ∈ H(nE ) \ {0}

}
which attaches to each valuation its corresponding Newton-Okounkov body is
continuous with respect to the tropical topology.



Variation of Okounkov Bodies

In Newton-Okounkov bodies sprouting on the valuative tree, the authors study
the map above in a particular case:

X = P2 = ProjC[x , y , z ], E = V (z) and
D = D1 + D2 where D1 = V (x) and D2 = C is a curve of degree 3. They get

∆(1:s),(0,1) =


conv-hull

(
(0, 0), (1, 0), (s, 1)

)
if 1 ≤ s < 2

conv-hull
(
(0, 0), (2, 0), (s/2, 1/2)

)
if 2 ≤ s < 5

conv-hull
(
(0, 0), (5/2, 0), (2s/5, 2/5)

)
if 5 ≤ s < 6 + 1

4

Our theorem explains why this map is continuous on irrational points, and why
the discontinuities are only from one side. All this follows from the embedding

of the line [1, 6 + 1
4 ) on T̊C

d−1
Σ(D) and noticing that the induced topology is

generated by intervals of the form [a, b) with a, b ∈ Q.
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(0, 0), (5/2, 0), (2s/5, 2/5)

)
if 5 ≤ s < 6 + 1

4

Our theorem explains why this map is continuous on irrational points, and why
the discontinuities are only from one side.

All this follows from the embedding

of the line [1, 6 + 1
4 ) on T̊C

d−1
Σ(D) and noticing that the induced topology is

generated by intervals of the form [a, b) with a, b ∈ Q.



Variation of Okounkov Bodies

In Newton-Okounkov bodies sprouting on the valuative tree, the authors study
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)
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conv-hull
(
(0, 0), (5/2, 0), (2s/5, 2/5)

)
if 5 ≤ s < 6 + 1

4

Our theorem explains why this map is continuous on irrational points, and why
the discontinuities are only from one side. All this follows from the embedding

of the line [1, 6 + 1
4 ) on T̊C

d−1
Σ(D) and noticing that the induced topology is

generated by intervals of the form [a, b) with a, b ∈ Q.


