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We work over C. Let X be a variety of dim d.

Given a flag
F={X=Xy2- 2 X}

where X; is a Cartier divisor on X1 we consider
vr: K(X) — R?
f — (ordx, ,(f),ordx, ,(f1),...,ordx,()).
This is the Flag Valuation of F.

Moreover, if we have a big divisor E C X we can define

Ar(E)=J {@‘ fe H°(nE)\{O}}.

n>1

This is the Okounkov Body of E with respect to F.



Introduction: Flag valuations and Okounkov Bodies

Example: X = IP? with coordinates [x : y : z] and E = V/(z). Then H°(nE)
corresponds to
{p(x,y) € Clx,y] | deg(p) < n}

If F corresponds to the x axis followed by the origin, then

L

=1 = A, (D)

At each step we compute all the values of H(nD) and normalize. The Okoukov
body corresponds to the closure of the union of these points.
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Introduction: Flag valuations and Okounkov Bodies

The geometric properties of Ax(E) are linked to the properties of E. For
example:

Theorem (Lazarfeld-Mustata 08', Kaveh-Khovanskii 09°)

dim Ax(E) = litaka. dim(E)
If E is ample. Leading coefficient of He = Vol(Ax(E))

This statement gives us plenty of freedom to choose F.

— What can we say about the map F — Ax(E)?
— Is it continuous?

For this kind of questions it is convenient to generalize the definition of
Okounkov Body to an arbitrary valuation v with values in RY.
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In the following we will describe some developments in the direction of questions
1 and 2.
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Spaces of Valuations

What can be the domain of the map v — A, (E)?

m Riemann-Zariski space
m Huber Analytification (Adic Spaces)
m Berkovich Analytification

m The valuative tree



Monomial Valuations

Consider X = A% = Spec Clx, y] and fix o, 3 € R>q. Then, the map

vop: Clx,y] — R

Z aix'y! — min{ia +jB | a; # 0}
1j>0

extends to a valuation in K(X). We cal this a Monomial valuation.
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Quasi-monomial valuations

Let X be a variety and D = _;_; D; a SNC divisor.

We can take local equations for each D; to define monomial-like valuations.

Example: If X is a surface, D; = V(x) and D, = V/(y) locally around their
intersection p. Then, by the transversality

Ox.p = C[x, y]l.

So, given o, B € R>g we can consider v, g defined by

Vas | Y agx'y! | = min{ia +jB | a; # 0}.
ij

M (D) = set of all quasi-monomial
' valuations w.r.t D.
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Dual Cone Complex

Given an SNC divisor D = Y"7_, D;, we can construct a cone complex by
Taking one ray for each D;.

Taking one face for each intersection of D!s.

¥ (D) = Dual cone complex of D

Example:
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Monomial Valuations Geometrically

Putting coordinates on each cone of ¥ (D) gives the equality
(D) = ¥(D)

So geometrically, the monomial valuations defined in terms of D with weights in
R>q are parametrized by the dual complex!

Now, by changing the weights to (R¥)>, o with its lexicographic order, we can
construct monomial valuations of higher rank. Let us denote by ./7*(D) the set
of all such valuations.

— s there any way to relate .2 *(D) geometrically to the dual cone complex
X(D)?

Answer: Yes, they are given by tangent directions in X (D).
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Tropicalization of rational functions

Given f € K(X) we define its tropicalization with respect to D as the map

trop(f): (D) — R
p — vp(f).

In terms of coordinates, if f = Z a,-jx"yj then
ij

trop(f)(x,y) = min{ix + jy | a;j # 0}. trop(f
ij

The map trop(f) is continuous, rational and piecewise linear.

Theorem 1. Approximation Theorem (Amini - | '21)

Any continuous, rational, piecewise linear function in X (D) is the tropicalization
of some rational function.
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Tangent Cone Bundles

Given a polyhedral complex ¥, we define its tangent cone bundle of order k,
denoted by TCX ¥ as the set of all elements (x; wa, ..., wk) such that:

M xex
B x+ew, € X fore >0 small

X+ 1wy +eaws € X for g1 > 0 small and g5 > 0 small w.r.t &,.

not belongs to TC2%.

’ ‘not 'Bélongs to TC?Z
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Partial Derivative Operators

With respect to each element (x; w) € TC* ¥(D), we consider a partial
derivative operator acting on tropical functions over £(D). It is defined
inductively as follows

F(x + hwy) — F(x)

Dun F(x) = Am, h
w +hw; ( ) DW F(X)
Duy w, F(x) = II1—>0 1+hws n
DW w w, F — DW W F
DW1,...,wk (X) = lim 1oy W1 Hhwe (X) 150, Wh—1 (X)

h—0
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Duality Theorem

Theorem 2, Duality Theorem (Amini - | '21)
There is an isomorphism of bundles over .Z(D) ~ ¥(D)

MK(D) —=— TC*15(D)

| |

#(D) —=— ¥(D)

where (x; w) € TC*~1 £(D) corresponds to the valuation
Visw)(F) = (trop(f)(x), Dw, trop(f)(x), ..., Dw trop(f)(x))
which is a monomial valuation with respect to the weights

(x; ﬂ)T =(01,...,0k) € (Rk)zlexo.
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If we come back to the original problem, the map

A, : TCK1¥Y (D) — BC(RX)
(x;w)— A

V(x:ﬂ)

is not continuous with the euclidean topology. This is understandable because
the maps f — v(,.u)(f) are not continuous.

We introduce the tropical topology as the weakest topology that makes all the
maps

TC*'¥(D) — R*
(Xvﬂ) — V(X;ﬂ)(f)

continuous, when R¥ is endowed with its euclidean topology.
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Topology on TC*~1¥(D)

Using the approximation theorem we can understand the tropical topology on
TCK13(D):

m The tropical topology is finer than the euclidean topology.

m It is not locally compact nor second countable. It is separable and first
countable.

m A set is dense in the tropical topology if and only if it is dense in the
euclidean topology.

m The local basis of neighborhoods of an irrational point is the same in the
tropical and euclidean topology.



Variation of Okounkov Bodies

Theorem 3 |. Amini

The map
A: T '5(D) — BC(RY)

vi— A, = U{@HGH(nE)\{O}}

n
n>0

which attaches to each valuation its corresponding Newton-Okounkov body is
continuous with respect to the tropical topology.
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Variation of Okounkov Bodies

In Newton-Okounkov bodies sprouting on the valuative tree, the authors study
the map above in a particular case: X = P2 = ProjClx, y, z], E = V/(z) and
D = Dy + D, where D; = V/(x) and D, = C is a curve of degree 3. They get

conv-hull ((0,0), (1,0), (s, 1)) ifl<s<?2
A1:s),0,1) = § conv-hull ((0,0), (2,0),(s/2, 1/2)) if2<s<5b
conv-hull ((0,0), (5/2,0), (25/5,2/5)) if5<s<6+1
Our theorem explains why this map is continuous on irrational points, and why

the discontinuities are only from one side. All this follows from the embedding

of the line [1,6 + 1) on de_lz(D) and noticing that the induced topology is
generated by intervals of the form [a, b) with a, b € Q.



