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Introduction
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Slogan: The input data in the diagram above is tropical geometry data in a natural way. Therefore, the auction
process should depend on tropical geometry as well.

Elizabeth Baldwin y Paul Klemperer (2019). Understanding preferences:“demand types”, and the
existence of equilibrium with indivisibilities. Econometrica, 87(3), 867-932.
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Introduction

1 There are n different kinds of goods, and a set J of different agents interested on them.

2 Each bundle of goods determines an element x ∈ Zn. We denote by A ⊆ Zn the set of all possible
bundle of goods give the inventory.

3 The preferences of the agents can be understood in terms of valuations functions uj : A → R.

4 If we fix prices p1, . . . , pn for the goods. Each good generates a utility equals to the difference in
valuation and price

uj(x)− x1p1 + · · ·+ xnpn = uj(x)− ⟨x, p⟩.

5 The agent is interested in maximizing utility, giving

fu(p) = max
x∈A

(uj(x)− ⟨x, p⟩) .

6 This last function encodes the behavior of the agent. He will be interested in buying what has more
utility!

The function fu is an instance of an n-th variable tropical polynomial.
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Tropical Geometry

The tropical semiring is
T := (R ∪ {−∞},⊕,⊙)

with the tropical sum ⊕ and tropical multiplication ⊙ given by

a ⊕ b := max(a, b) , a ⊙ b := a + b. ∀a, b ∈ T.

0 ⊙ a = a −∞⊕ a = a a ⊕ a = a 3 ⊕ (?) = 1.

A tropical Laurent polynomial is an expression of the form

fu =
⊕
a∈A

ua ⊙ xa

for some A ⊆ Zn. Written in a different form

fu(x) = max
a∈A

(
ua + ⟨a, x⟩

)
.

A tropical zero of fu is an element x ∈ Rn for which fu achieves the maximum at least twice. The set of all
tropical zeros is called a tropical hypersurface.
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Tropical Hypersurfaces

Given the tropical polynomial p1(x, y) = x ⊕ y ⊕ 0 = max{x, y, 0}. The set of all zeros is given by

{(x = y) ∧ (x ≥ 0)} ∪ {(x = 0) ∧ (x ≥ y)} ∪ {(y = 0) ∧ (y ≥ x)}.

which gives the tropical hypersurface T (p1)

(x = 0) ∧ (x ≥ y)

(y = 0) ∧ (y ≥ x)

(x = y) ∧ (x ≥ 0)

(0, 0)

Hernan Iriarte (UT Austin) SIAM Texas-Louisianan 2023 5 / 18
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Tropical Hypersurfaces

Using polymake:

p2(x, y) = 2 ⊕ 4x ⊕ 3x2 ⊕ 5x3 ⊕ 7x4 ⊕ 6x5 ⊕ 8x6 ⊕ 10x7 ⊕ 8x8 ⊕ 9y

⊕10y2 ⊕ 8y3 ⊕ 7y4 ⊕ 5y5 ⊕ 6y6 ⊕ 3y7 ⊕ 4y8 ⊕ 15x4y4

Figure 1: T (p2)
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Tropical Hypersurfaces

p3(x, y, z) = 1 ⊕ 1x ⊕ 1y ⊕ 1z

p4(x, y, z) = 6 ⊕ 5x ⊕ 4y ⊕ 3z ⊕ 3x2 ⊕ 2y2 ⊕ 1z2

(a) T (p3) (b) T (p4)
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Back to Auctions

Given a market with n different types of goods and a set A ⊆ Zn of bundles of goods. An agent has a valuation
u : A → R which defines a utility function

fu(p) = max
x∈A

(uj(x)− ⟨x, p⟩) .

The demand of the agent for a given price p is the set Du(p) = argmaxx∈A(fu(p)).

One of the main objectives of microeconomics, is to understand the demand of an agent or set of agents. In
particular, how do they change when the price of the goods change.

1 The tropical hypersurface of the utility function is the locus of indifferent prices, as moving the price
along a cell of this polyhedral complex (Gröbner complex) doesn’t change the demand of the agent.

2 Surprisingly, the demands of the agent also fit into a polyhedral complex: The regular subdivision of
the Newton polytope of fu.

3 Moreover, the demand complex is dual to the tropical hypersurface.
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Regular subdivision

p(x, y) =1 ⊕ 1x ⊕ 1x2 ⊕ 1x3 ⊕ 1y ⊕ 2yx ⊕ 2yx2 ⊕ 1yx3 ⊕ 1y2⊕

2y2x ⊕ 2y2x2 ⊕ 1y2x2 ⊕ 1y3 ⊕ 1y3x ⊕ 1y3x2 ⊕ 1y3x3

x

y
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Hypersurface Duality

3

3

3

3

Newt(p) T (p)

T (p)
(0, 0) (3, 0)

(3, 3)(0, 3)
(0, 1)

(1, 0)

(0,−1)

(0, 0)

(−1, 0)
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1 The hypersurface duality gives you a way to visualize the demand and the change of demand as prices
move.

2 As a consequence of this duality we get that the demand can only decrease if the prices are perturbed.

Other big advantage of the tropical geometry setting is that it handles easily multiple agents.

Definition
Given a family of agents J, their aggregate demand at a price p ∈ Rn is the Mikowski sum

DuJ (p) :=
∑
j∈J

Duj (p).

The aggregate demand coincides to the demand of a fictional aggregate agent. The utility function of this
aggregate agent will be obtained as a product of the polynomials

fJ = f1 ⊙ · · · ⊙ f#J

Given an inventory x of products we want to sell. We say that there is a competitive equilibrium if there exists
a price p for which x can be distributed and completely sold between the agents.

In other words, x = x1 + · · ·+ x#J where xi ∈ Dui (p) for each i, or equivalently, x ∈ DuJ (p).

Remark: Notice that an auction will be successful exactly if a competitive equilibrium exists.
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Perturbation of the Valuation

In the following, we are interested in the following question.

How does the demand of an agent changes when its valuation changes?

To study this question, given a set A ⊆ Zn we introduce the valuation space Val(A) = {u : A → R}. This
is the space of all possible valuations of an agent over a set of bundle of goods A.

Theorem (Hemicontinuity Theorem)
Given A ⊆ Zn, the map

D : Val(A)× Rn → P(Zn)

(u, p) 7→ Du(p)

satisfy that for each u ∈ Val(A) and p ∈ Rn there exists an open neighborhood of V ⊆ Val(A)× Rn of
(u, p) such that ∀(u′, p′) ∈ V

Du′ (p
′) ⊆ Du(p).

In other words, the demand of an agent can only decrease under perturbations of the price and valuations.

Do we have a way to understand how is the change exactly?

Hernan Iriarte (UT Austin) SIAM Texas-Louisianan 2023 12 / 18
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Tropical Geometry of Higher Rank

The tropical semiring of rank k Tk = (Rk ∪{−∞},⊕,⊙) is the semiring over Rk in which ⊙ is the addition
and ⊕ the lexicographic order

(a(1), . . . , a(k)) ≺ (b(1), . . . , b(k)) ⇐⇒ ai < bi for the minimum i such that ai ̸= bi

Elements of a ∈ Tk should be thought as

a(1) + εa(2) + ...+ ε(k−1)a(k)

where ε is a very small but positive element.

We can introduce tropical polynomials fu =
⊕
a∈A

ua ⊙ xa and tropical hypersurfaces T (fu) ⊆ Tn
k in the same

way as we did before.

How do we visualize T (fu)?
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⊕
a∈A

ua ⊙ xa and tropical hypersurfaces T (fu) ⊆ Tn
k in the same

way as we did before.

How do we visualize T (fu)?
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Iterated Fibrations

There are natural projections maps

πr : Tk −→ Tr

a 7−→ a[r] := (a(1), . . . , a(r))

This projection maps extend to maps elements in Tn
k and to polynomials.

Then, for any Laurent polynomial f we have

T (f [r]) = T (f )[r].

Which gives us a sequence of projections

T (f [r])
πk−1−−−→ T (f [r−1])

πk−2−−−→ . . .
π1−−→ T (f [1])

The base of this fibration is a tropical hypersurface of rank 1, and all the fibers of points are tropical hyper-
surfaces of rank 1. Moreover, the hypersurface duality generalize to this context.
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Layered regular subdivisions

Consider the set

A = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (1, 2), (2, 1), (1, 1)}

In this case, the layered regular subdivision induced by the map u : A → T3

u(0, 0) = 1 + 1ε+ 1ε2

u(1, 0) = 1 + 2ε+ 1ε2

u(2, 0) = 1 + 2ε+ 2ε2

u(3, 0) = 1 + 1ε+ 1ε2

u(0, 1) = 1 + 2ε+ 1ε2

u(0, 2) = 1 + 2ε+ 2ε2

u(0, 3) = 1 + 1ε+ 1ε2

u(1, 2) = 2 + 2ε+ 1ε2

u(2, 1) = 2 + 2ε+ 1ε2

u(1, 1) = 2 + 2ε+ 2ε2.

Will be the following:

1 2 2 1

222

2 2

1

1 2

121

2 1
≤ ≤
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Higher Rank Hypersurface Duality

Theorem (Hypersurface Duality)
Given a higher rank tropical polynomial and its corresponding layered fibration of its Newton polytope,
there is a way to read from this subdivisions the combinatorial structure of the iterated fibration in its
tropical hypersurface.

T
(

f [1]u

)
x1

x2x3 x4

Tx1

(
f [2]u

)
Tx1,x4

(
f [3]u

)
Tx2

(
f [2]u

)
Tx2,x3

(
f [3]u

)

Hernan Iriarte (UT Austin) SIAM Texas-Louisianan 2023 16 / 18



Part of the usefulness of this framework is that it mixes two perspectives.

1 On one hand, the elements of Tk are rigid, and this allow us to draw the diagrams that generalize the
ideas from T1.

2 On the other hand, given an element

x(1) + εx(2) + ...+ ε(k−1)x(k) = x ∈ Tk

we can replace ε by a concrete small real number, giving rise to a perturbation of the element x(1).
More generally, “finitelly generated” objects X/Tk should give rise to perturbations Xε in this way.

As working with perturbations is generally a difficult thing (What is the perturbation of the demand Du(p) as
u changes?), the formal point of view of working directly in Tk simplify the study.
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Perturbation of the Demand

Theorem (Demand)

Consider a map u : A ⊆ Zn → Rk . Then, for δ > 0 a small real number, the demand

Du(1)+δu(2)+···+δk−1u(k) (p(1) + δp(2) + · · ·+ δk−1p(k)).

coincides with the corresponding cell in the layered subdivision dual to the cell in the tropical hypersurface
containing p = p(1) + εp(2) + · · ·+ εk−1p(k)

Theorem (Perturbation of Competitive Equilibria)
Consider a family of agents, each with a valuations which has been perturbed by functions
{uj : A ⊆ Zn → Dk}j∈J . This family posses a competitive equilibrium for x ∈ A for each δ > 0 small iff
the corresponding valuations have formally a competitive equilibrium over Tk .
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