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Abstract

In the last decades, there has been unexpected interactions between Algebraic geometry and
other fields of mathematics. In particular, there are interesting connection with polyhedral geom-
etry, the area of mathematics concerning the study of polyhedra, polytopes and triangulations
among others.

One may see the above connection specially in two areas of Algebraic geometry: Toric varieties
and Tropical geometry. In the context of Toric varieties, one uses polyhedral objects to construct
interesting and tractable geometrical structures. On the other hand, in Tropical geometry one tries
to understand geometric structures by attaching to them some simplified polyhedral version.

The objective of this Mémoire de Master is to give an overview of these two areas of algebraic
geometry and to show some applications of them.

In Chapter 1 the main theory of Toric varieties is developed. We begin studying affine toric
varieties and its correspondence with polyhedral cones. Afterwards, by gluing upon this case one
obtain the general correspondence between normal toric varieties and fans (certain collection of
cones). We study sheaves over these algebraic varieties and construct a resolution of singularities
for them, which preserves its natural structures.

In Chapter 2 we prove the characteristic 0 semi-stable reduction theorem for surjective mor-
phisms f : X → C, where C is a smooth curve. For this we need to introduce the general concept
of Toroidal variety which we developed during the first two sections.

In Chapter 3 we introduce Tropical geometry. We start this by defining the tropical semiring
T and introducing tropical hypersurfaces as zeros of polynomials on it. Then we move to general
tropical varieties by defining them as the sets obtained as tropicalization of algebraic varieties.
Then we prove that these sets have a structure of weighted polyhedral complex satisfying the
balancing condition, this is the Structure Theorem for Tropical varieties.
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Chapter 1

Toric Varieties

The purpose of this chapter is to give a brief overview of the basics on toric varieties, also known as
toroidal embeddings. This will be used in Chapter 2 to deduce the semistable reduction theorem
of Deligne-Mumford, and in Chapter 3 to introduce the ideas of Tropical Geometry. We mainly
follow [KKMSD73] for this chapter.

Throughout our discussion we fixed an algebraically closed field k. A variety is an integral
scheme of finite type over k.

1.1 Facts about Algebraic Tori
We denote by Gm the algebraic group over k whose k-points are k∗. An algebraic torus T is an
algebraic group isomorphic to Gnm = Gm × · · · ×Gm︸ ︷︷ ︸

n times

for some n ≥ 1. Sometimes we write Tnk to

indicate the dimension and the field of definition of T .

As T 1 = Gm = A1 \ {0}, using coordinates in A1 we see that Γ(T 1) = k
[
x, x−1

]
and more

generally
Γ(Tn) = k

[
x1, x

−1
1 , . . . , xn, x

−1
n

]
This is the ring of Laurent polynomials in n variables, i.e., expressions of the form f =∑
α∈I cαx

α for some finite subset I of Zn, but it can also be seen as the group algebra of the
group Z.

For a given algebraic group T we define its group of characters and its group of one-parameters
subgroups respectively as

M = Homalg. groups(T,Gm) and N = Homalg. groups(Gm, T )

In order to understand these groups we need the following result.

Proposition 1.1.1. The only endomorphisms of Gm are the n-powers, i.e,

Homalg.groups(Gm,Gm) = {x 7→ xn}n∈Z

.

Proof. It is easy to see that

Homalg.groups(Gm,Gm) ⊇ {x 7→ xn}n∈Z

On the other hand, we have

Homalg.groups(Gm,Gm) ⊆ Homalg.var(Gm,Gm)
bij
= Homk−alg

(
k
[
x, x−1

]
, k
[
x, x−1

])
= k

[
x, x−1

]×
=
⋃
n∈Z

kxn

So Homalg.groups(Gm,Gm) ⊆ {x 7→ cxn}n∈Z,c∈k∗ . Now, by linearly independence of characters
we have that Homalg.groups(Gm,Gm) is a linearly independent subset. Thus x 7→ cxn and x 7→ xn
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cannot be simultaneously endomorphisms of Gm. Hence only x 7→ xn is an endomorphism.

As Hom commutes with finite direct sums in both entries, we get that M ' N ' Zn so M and
N are lattices. More concretely we have

Homalg. groups(T
n,Gm) = {(x1, . . . , xn) 7→ xa11 · · ·xann | (a1, . . . , an) ∈ Zn}

Homalg. groups(Gm, Tn) = {x→ (xa1 , . . . , xan) | (a1, . . . , an) ∈ Zn}

From now on we will consider M , N just as lattices. For r ∈ M and a ∈ N we will denote by
χr and λa the corresponding homomorphisms.

Using the previous notation we get Γ(T ) = k[{χr}r∈M ]. In other words, the coordinate ring of
a torus is the group algebra of its character lattice M .

Moreover we have a canonical perfect pairing M ×N → Hom(Gm,Gm) ∼= Z giving by compo-
sition. In concrete terms this map attaches to each pair (r, a) the integer 〈r, a〉 defined by

χr ◦ λa(t) = t〈r,a〉 ∀t ∈ k×

We use this pairing to identify M as the dual of N .

1.2 Affine Toric Varieties
Definition 1.2.1. A toric variety is an algebraic variety X containing a torus T as an open
subvariety together with an extension of the action T × T → T to an action T × X → X of the
torus in the variety. A toric morphism between two toric varieties X and X ′ containing a copy
of the same torus T is a morphism f : X → X ′ of algebraic varieties that is equivariant (i.e,
f(αx) = αf(x) ∀α ∈ T, x ∈ X) and fix the torus (i.e, f(1) = 1). �

Notice that since the variety X is irreducible (recall it is an integral scheme) the torus T is
dense in X.

Example 1.2.2. Pn, An and the nodal cubic V
(
x3 − y2

)
⊆ A2 are examples of toric varieties

where the torus T is {(x0 : · · · : xn) | xi 6= 0 ∀i}, (k∗)n and {(t2, t3) | t ∈ k∗} respectively. �

The first objective is to understand affine toric varieties in terms of their coordinate rings. We
start by translating the action of a torus on an arbitrary affine variety.

Proposition 1.2.3. Given a variety X = SpecB, the data given by an action of T on X is
equivalent to a graduation of B of type M . Under this correspondence equivariant morphisms f
translate to graded morphism of algebras ϕ.

Proof. Given the action, we define Br = {f ∈ B | fr(αx) = χr(α)f(x), ∀α ∈ T, ∀x ∈ X} for the
graduation and given the graduation we define the action as the map induced by the morphism
B → k[M ]⊗B given by f 7→

∑
χr ⊗ fr.

Now if f : X → X ′ is an equivariant morphism we have f(α · x) = α · f(x) ∀α ∈ T , so for
h ∈ Br homogeneous we have

ϕ(h)(αx) = h(f(αx))

= h(αf(x))

= χr(α)h(f(x))

= χr(α)ϕ(h)(x)

And hence ϕ is a homogeneous morphism. Similarly if ϕ is homogeneous from ϕ(h)(αx) =
χr(α)ϕ(h)(x) we get h(f(αx)) = h(αf(x)) whenever h ∈ Br and then by linearity for every h ∈ B,
hence f(αx) = αf(x).

Now let’s use this to describe all affine toric varieties in terms of subgroups of the group of
characters M :

If T ↪→ X is a toric variety with X = SpecB we have a map between k-algebras φ : B →
k[M ]. By the proposition above φ is a morphism of graded algebras and, as the inclusion of the
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torus is dominant, φ is also injective. Therefore we can consider B as a subgraded algebra of
k[M ] =

⊕
r∈M χrk. Then it must be of the form k[S] for some finitely generated sub-semigroup

S ⊆ M and also as the function field of T is equal to the function field of X we must have
Frac k[S] = Frac k[M ], or in other words, S generate M as a group.

Conversely take a finitely generated sub-semigroup S ⊆M such that S generate M as a group.
Then k[S] ⊆ k[M ] and k[M ] is a localization of k[S] with respect to finitely many elements.
Hence T = Spec k[M ] is an open subset of the affine variety X = Spec k[S] and as the inclusion
k[S] ↪→ k[M ] is a graded morphism, X is a toric variety.

Writing down what we have got:

Theorem 1.2.4. There is a correspondence between finitely generated sub-semigroups S of M that
generate M as a group and isomorphism classes of affine toric varieties of T . In concrete terms it
is given by S 7→ Spec k[S]. Moreover, this induce a order reversing correspondence between toric
morphisms and inclusions of semigroups.

Proof. Only the morphism correspondence is new.

If f : X1 → X2 is a toric morphism between X = Spec k[S1] and X ′ = Spec k[S2] it induce a
graded morphism between algebras ϕ : k[S2]→ k[S1] that is injective (because f is dominant) and
that extend to the identity in k[M ] (because f |T = IdT ) so ϕ is the inclusion S2 ⊆ S1.

In the other hand if we have S2 ⊆ S1 then k[S2] ⊆ k[S1] and as this inclusion is a graded mor-
phism we get a toric morphism X1 → X2 that fix pointwise the torus because the map between
k-algebras extend to the identity on k[M ].

Remark 1.2.5. We notice here for future references that (k-valued) points of the variety X =
Spec k[S] correspond to morphisms of varieties Spec(k) → X and hence to k-algebra morphisms
k[S]→ k or equivalently, semigroup morphisms S → k.

In concrete terms, the semigroup morphism γ : S → k corresponding to the point x ∈ X is
given by γ(r) = χr(x) ∀r ∈ S. �

From now on we will be mainly interested in normal toric varieties. In this context the cor-
respondence seen in the above section can be adapted in a more combinatorial way. For this we
introduce the following.

Definition 1.2.6. A sub-semigroup S ⊆M is called saturated if for every integer n ≥ 1 and every
r ∈M the condition nr ∈ S implies r ∈ S. �

We can translate this concept to the algebro-geometric side

Proposition 1.2.7. The bijection in Theorem 5 makes a correspondence between saturated semi-
groups and normal affine toric varieties.

Proof.: Suppose Spec k[S] is normal. Then k[S] is integrally closed. Therefore, if nr ∈ S for some
n ∈ N, r ∈ S we have that χr satisfy the integral equation xn − χrn = 0 and hence χr ∈ k[S], i.e
r ∈ S.

For the converse we suppose that S is satured and we need to prove that k[S] is integrally
closed. Since k[S] ⊆ k[M ] and the later is integrally closed and has the same fraction field, we just
need to prove that if f ∈ k[M ] is integral over k[S] then belongs to k[S]. Actually, as k[S] is a
graded algebra it is enough to work with f homogeneous (see [ZS60], p.158) so we have an element
χr satisfying the equation

xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a0 = 0

with coefficients ai ∈ k[S]. Each ai is a sum of characters but we can throw out all the ones whose
degree do not add up, i.e, nr = r(n−i)+deg ai. Then taking i with ai 6= 0 we have deg ai = ri ∈ S
so by saturation r ∈ S so χr ∈ k[S].

Now we are going to visualize this saturated semigroups in a more combinatorial way as poly-
hedral cones sitting inside MR = M ⊗ R. For the notion of polyhedral cone we refer the reader to
the appendix.
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Lemma 1.2.8. There is a correspondence between strictly convex, rational polyhedral cones σ in
NR and saturated finitely generated sub-semigroups of M given by σ 7→ σ∨ ∩M .

Proof. Given a strictly convex, rational polyhedral cones σ in NR. The semigroup σ∨ ∩ M is
saturated (intersection of saturated sets) and generates M as a group, because σ∨ is not contained
in any hyperplane of MR. Hence, we just have to prove that it is finitely generated. For this, as σ∨
is rational, we can take x1, . . . , xr ∈M such that cone(x1, . . . , xr) = σ∨. Now taking the bounded
subset

K =

{
r∑
i=1

δixi

∣∣∣∣∣ 0 ≤ δi < MR

}
We have that (K ∩M) ∪ {x1, . . . , xn} is a finite set of generators for σ∨ ∩M . Indeed, for any

x ∈ σ∨ ∩M there are λi ∈ Z≥0 such that x−
∑
i λixi ∈ K ∩M .

Conversely, let S ⊆M be a saturated finitely generated sub-semigroup of M . If x1, . . . , xn are
generators for S then the cone σ, whose dual is given by {

∑
i xiλi | λi ∈ R≥0}, is a convex rational

polyhedral cone in NR not contained in any hyperplane and whose lattice points are S.

Using this we can state the theorem that classifies affine normal toric varieties.

Theorem 1.2.9. The correspondence σ 7→ Spec(σ∨∩M) gives a bijection between the set of strictly
convex rational polyhedral cones in NR and the set of affine normal toric variaties containing T .

Proof. This is a direct concatenation of Proposition 1.2.7 and Lemma 1.2.8 above.

We will use the notation Sσ := σ∨ ∩M for the semigroup associated to the cone and Uσ :=
Spec k[Sσ] for the toric variety associated.

Example 1.2.10. In Example 1.2.2 we saw the three toric variaties. Namely, Pn, An and V (x3−
y2) ⊂ A2. As the projective space is not an affine variety and the nodal cubic is not a normal variety
only the affine space is an example of a toric normal variety. Under the correspondence described
above we see that Uσ = An where σ = cone(e1, . . . en) ⊂ NR. In fact we have σ∨ = cone(e∗1, . . . , e

∗
n)

so Sσ = σ∨ ∩MR ∼= Nn and then Uσ = Spec k[Sσ] = Spec k[x1, . . . xn] = An �

Now recall that even though a smooth variety is always normal, the inverse is not true in
general. Hence there exists the possibility that the variety Uσ obtained with the construction
above gives a nonsmooth variety. Fortunately there is a criterion to determine exactly when an
affine toric variety is smooth in term of the associated cone.

Theorem 1.2.11. Uσ is non singular ⇐⇒ σ is an smooth cone as defined in appendix A.

Proof. Suppose σ is smooth. Then there is a basis {e1, . . . , ek, ek+1, . . . , en} of the lattice N such
that σ = cone(e1, . . . , ek) ⊆ NR. Hence

σ∨ = cone(e∗1, . . . , e
∗
k, e
∗±1
k+1, . . . , e

∗±1
n ) so Uσ = Spec

(
k[e∗1, . . . , e

∗
n]e∗k+1···e∗n

)
= kn × (k∗)n−r

and this is a non singular variety.

For the other implication let σ be a cone such that Uσ is smooth. We are going to reduce the
problem to the case dim(σ) = n. If dim(σ) = r < n let N1 be the smallest vector subspace of N
containing σ. Then N/N1 is a torsion free abelian group. Hence, there exists a vector subspace
N2 ⊆ N such thatN1⊕N2 = N . This decomposition induces a decompositionM1⊕M2 = M . Now,
since we can see σ as a cone of N or of N1, we can compute the two semigroups Sσ,N and Sσ,N1 .
These semigroups satisfy Sσ,N = Sσ,N1 ⊕M2 and therefore we have k[Sσ,N ] = k[Sσ,N1 ] ⊗ k[M2]
from where Uσ,N = Uσ,N1

× (k∗)n−r. As we are assuming Uσ,N smooth we can deduce that Uσ,N1

is smooth and therefore we can suppose σ is a cone of maximal dimension.
Now assuming σ has maximal dimension de dual σ∨ ⊆ M is strictly convex and hence no

element of k[Sσ] is invertible. Taking the maximal ideal I generated by {χα | α ∈ Sσ \ {0}} we see
that it corresponde with a point p ∈ Uσ (in fact it is the unique fixed point of the action), hence
by the non singular assumption the ring RI is a graded regular local ring of dimension n so there
are χα1 , . . . , χαn such that IBI = (χα1 , . . . , χαn)BI or in other words, for all β ∈ S

χβ =

n∑
i=1

aiχ
αi where ai ∈ RI
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clearing denominators we have

uχβ =

n∑
i=1

biχ
αi where u ∈ R \ I and bi ∈ R

And hence looking at the degree β part of this equation we get β = γ + αi for some γ ∈ S and
1 ≤ i ≤ n. After doing this again for γ we get β = γ′ + αj + αi for some γ ∈ S and 1 ≤ i, j ≤ n
and continuing the process at some point it must end because S does not have invertible elements.
Hence the α1, . . . αn generate S as a semigroup and then they form a basis of M over Z. Then
passing to the dual is not difficult to see that σ ∩N is also generated by a basis of the lattice of N
and so σ is an smooth cone.

Now, in a similar vein as in Theorem 1.2.4. the correspondence between affine normal toric
varieties and cones induce a correspondence between inclusions of cones and toric morphisms.

Theorem 1.2.12. There exist a morphism of toric varieties f : Uσ1
→ Uσ2

if and only if σ1 ⊆ σ2

and in such a case, f is uniquely defined. Moreover, if σ1 is a face of σ2 then f is an open
immersion.

Proof. We have σ1 ⊆ σ2 ⇐⇒ Sσ2
⊆ Sσ1

hence the first part follows directly by Theorem 1.2.4.
Now if σ1 is a face of σ2 there is an α ∈ Sσ2

such that α ≥ 0 on σ2 and σ1 = {x ∈ σ2 | α(x) = 0}.
Notice that −α ∈ Sσ1 and for every β ∈ Sσ1 there is an n ≥ 0 such that β + nα ≥ 0 in σ2. Hence

χβ ∈ Γ(OUσ1 ) ⇐⇒ β ≥ 0 on σ1

⇐⇒ there is an n ≥ 0 such that β + nα ≥ 0 on σ2

⇐⇒ χβ ∈ Γ(OUσ2 )

[
1

χα

]
So the inclusion Γ(OUσ2 ) ↪→ Γ(OUσ1 ) is a localization map and hence Uσ1

→ Uσ2
is an open im-

mersion.

1.3 Orbit-Cone Correspondence
In this section we are going to state and prove the Orbit-Cone Correspondence and for this we
need to study the action of T in Uσ in more detail.

We start by introducing distinguished points.

Proposition 1.3.1. Fix a strictly convex rational cone σ.

1. If a ∈ N we have
a ∈ σ ⇐⇒ λa(0) := lim

t→0
λa(t) exists in Uσ

2. Let a1, a2 ∈ σ ∩N , then

λa1(0) = λa1(0) ⇐⇒ a1 and a2 lie in the interior of the same face of σ

3. The point of the form λa(0) for some a in the interior of the face τ of σ is given in terms of
the semigroup morphism γτ : Sσ → k by

γτ (r) =

{
1 if r ∈ Sσ ∩ τ⊥

0 if not

Proof.

1.. lim
t→0

λa(t) exists in Uσ ⇐⇒ lim
t→0

χr(λa(t)) = lim
t→0

t〈r,a〉 exists in A1 for every r ∈ Sσ

⇐⇒ 〈r, a〉 ≥ 0 for every r ∈ Sσ
⇐⇒ a ∈ ((σ∨)∨ = σ
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2. Let {r1, . . . , rn} be a set of generators for Sσ, then {χr1 , . . . , χrn} are coordinates for Uσ.

Now as

χri(λa(0)) =

{
1 if 〈ri, a〉 = 0

0 if 〈ri, a〉 > 0

we have that λa1(0) = λa2(0) exactly when 〈ri, a1〉 = 0 ⇐⇒ 〈ri, a2〉 = 0 and this happen
exactly when a1 and a2 belong to the interior of the same face.

3. Fix a face τ ⊆ σ and a ∈ int(τ). For r ∈ Sσ we have

γτ (r) = 1 ⇐⇒ r ∈ Sσ ∩ τ⊥

⇐⇒ 〈r, a〉 = 0

⇐⇒ χr(λa(0)) = 1

Hence the point corresponding to γτ is exactly λa(0).

Definition 1.3.2. The points γτ associated to faces τ ⊆ σ by the proposition above are called the
distinguished points of Uσ. �

Let’s denote by O(τ) the orbit of the distinguished point of τ . The next proposition tell us
how to understand this sets in terms of semigroup morphisms.

Lemma 1.3.3.

1. For any cone σ we have

O(σ) ∼= {γ : Sσ → k | γ(r) 6= 0 ⇐⇒ r ∈ σ⊥ ∩M}
∼= HomZ(σ⊥ ∩M,k∗)

2. If τ is a face of σ then O(τ) = V (I) ⊆ Uσ where

I =
⊕

r≥0 on σ
r>0 on Int τ

kχr ⊆ Γ(Uσ)

Proof.

1. For simplicity let’s call O′ = {γ : Sσ → k | γ(r) 6= 0 ⇐⇒ r ∈ σ⊥ ∩N} momentaneusly. For
r ∈ Sσ we have

γσ(r) 6= 0 ⇐⇒ 〈r, a〉 = 0 for a ∈ int(σ) ⇐⇒ 〈r, a〉 = 0 ∀a ∈ σ ⇐⇒ r ∈ σ⊥ ∩N

Hence γσ ∈ O′. Also O′ is invariant under the action of the torus T , because if γ ∈ O′ then
t · γ : r 7→ χr(t)γ(r) is also in O′.
Next, if γ ∈ O′ we have γ(r) = 0 ∀r /∈ σ⊥ ∩N and hence the map

O′ → HomZ(σ⊥ ∩M,k∗)

γ 7→ γ |σ⊥∩M .

is injective and well defined (the restriction is a group homomorphism). In the other hand,
taking ψ ∈ HomZ(σ⊥ ∩M,k∗) we can extend it to a semigroup homomorphism on Sσ by
defining ψ(r) = 0 if r /∈ σ⊥ ∩M and then the map above is a bijection.

Finally denote by Nσ the sublattice of N generated by σ ∩N and N(σ) the quotient N/Nσ.
The perfect pairing over M × N induce a perfect pairing over σ⊥ ∩M × N(σ) so we can
identify HomZ(σ⊥∩M,k∗) with a torus TN(σ) = N(σ)⊗Zk

∗. Then the surjection N → N(σ)
induce another surjection N ⊗Z k

∗ → N(σ)⊗Z k
∗ and this translate to the map

TN → TN(σ) = HomZ(σ⊥ ∩M,k∗) = O′

who is no other than the action of TN on O′. Hence TN acts transitively in O′ so O′ = O(σ).
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2. In part 1. we saw that O(σ) ∼= HomZ(τ⊥∩M,k∗) but as any group morphism from τ⊥∩M is
also determined by its restriction to σ∨∩ τ⊥∩M we have that O(σ) ∼= Mor(σ∨∩ τ⊥∩M,k∗)
where Mor stands for semigroup morphisms.
Now for f =

∑
r arχ

r ∈ Γ(Uσ) we have

f ∈ I(O(τ)) ⇐⇒ f(x) = 0 ∀x ∈ O(τ) ∼= Mor(σ∨ ∩ τ⊥ ∩M,k∗)

⇐⇒
∑
r

arγ(r) = 0 ∀γ ∈ Mor(σ∨ ∩ τ⊥ ∩M,k∗)

⇐⇒ ar = 0 ∀r ∈ σ∨ ∩ τ⊥ ∩M
⇐⇒ ar = 0 ∀r ∈M s.t r ≥ 0 on σ and r = 0 on Int τ

⇐⇒ f ∈
⊕

r≥0 on σ
r>0 on Int τ

kχr

Now we are ready to proof the Orbit-cone correspondence

Theorem 1.3.4. Fix a strictly convex rational cone σ.

1. There is a bijection τ 7→ O(τ) between the faces of σ and the orbits of the action. This
bijection send τ to the orbit O(τ) generated by the point xτ .

2. dim τ + dimO(τ) = n

3. Under the bijection above
τ1 ⊆ τ2 ⇐⇒ O(τ2) ⊆ O(τ1)

Proof.

1. Let O be a orbit and τ the minimal face in σ such that O ⊆ Uτ , it exist because O ⊆ Uτ1
and O ⊆ Uτ2 implies O ⊆ Uτ1 ∩ Uτ2 = Uτ1∩τ2 . We claim that O = O(τ) from where the
bijection follows.

To prove the claim is enough to fix γ ∈ O and show that γ ∈ O(τ). For this consider
γ−1(k∗) ⊆ Sτ , as γ(r + s) = γ(r)γ(s) we have r + s ∈ γ−1(k∗) implies r, s ∈ γ−1(k∗)
moreover as γ−1(k∗)R is a convex subset subset of MR we have that it is a face of τ∨. Hence,
there is a face ς of τ such that γ−1(k∗)R = τ∨ ∩ ς⊥, so

γ−1(k∗) = τ∨ ∩ ς⊥ ∩M

From this we see that γ(r) = 0 ∀r /∈ ς⊥ ∩ M , so γ can be identified with a semigroup
morphism γ̄ : ς∨ ∩M → k∗ and then γ correspond to a point in Xς therefore O ⊂ Xς and
from minimality ς = τ . Then as γ(r) = 0 ⇐⇒ r ∈ τ⊥ we get γ ∈ O(τ) and we conclude
O = O(τ).

2. As we saw in Lemma 1.3.3, if Nσ is the smallest sublattice containing σ ∩ N , then O(τ) =
Hom(σ⊥ ∩M,k∗) can be identified with N/Nσ. Hence

dim(O(τ)) = rank(N/Nσ) = rank(N)− rank(Nσ) = n− dim(σ)

3. By Lemma 1.3.3 we have

O(τ2) ⊆ O(τ1) ⇐⇒
⊕

r≥0 on σ
r>0 on Int τ2

kχr ⊆
⊕

r≥0 on σ
r>0 on Int τ1

kχr

⇐⇒ σ∨ ∩ τ⊥2 ∩M ⊆ σ∨ ∩ τ⊥1 ∩M
⇐⇒ τ1 ⊆ τ2

Corollary 1.3.5. As in any set with an action of a group we have a partition given by its orbit.
In this case this give us the following disjoint union

Uσ =
⋃
τ<σ

O(τ)
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1.4 Classification of General Toric Varieties
Now we are going to extend our classification of normal affine toric varieties to arbitary normal
affine toric varieties. For this we need the following result due to Sumihiro to reduced the problem
to the affine case.

Theorem 1.4.1. (Sumihiro) Let T be a torus acting in a normal variety X, then every point of
X admits an open invariant affine neighborhood.

Proof. See [KKMSD73].

The combinatorial objects that will encode our toric varieties are called fans. These are col-
lections of strictly convex rational polyhedral cones satisfying properties resembling the ones for
simplicial complexes (Definition A.6).

By Theorem 1.2.11 a fan Σ give us a directed system of varieties that we can glue (take a
colimit) to form a new variety that we denote PΣ.

We can see that PΣ is normal as it has a cover {Uσα}α∈Λ by affine normal toric varieties. It
is also separable as Uσα ∩ Uσβ = Uσα∩σβ and the algebra Γ(OUσα∩σβ ) is generated by the two
subalgebras Γ(OUσα ) and Γ(OUσβ ). Notice that if Σ is the fan generated by a single cone σ, then
PΣ = Uσ, so this construction generalize the one we saw in the previous chapters.

Now we can classify normal toric varieties in terms of fans and extend the theorems we saw for
affine normal toric varieties in the previous sections.

Theorem 1.4.2.

1. The correspondence Σ 7→ PΣ defines a bijection between fans over NR and isomorphism
classes of normal toric varieties containing the torus T .

2. The correspondence Σ 3 σ 7→ Uσ defines a bijection between the cones in the fan and the
invariant affine open subsets of PΣ.

3. (Orbit-cone correspondence) The map which associates to each σ ∈ Σ the unique closed
orbit of Uσ denoted again by O(σ) gives a correspondence between the cones of Σ and the
orbits of PΣ. We have also σ1 ⊂ σ2 ⇐⇒ O(σ2) ⊆ O(σ1)

4. There is a toric morphism PΣ1 → PΣ2 iff for all σ1 ∈ Σ1 there is a σ2 ∈ Σ2 such that σ1 ⊆ σ2.

Proof.

1. and 2. Let X be a normal toric variety. By Sumihiro’s theorem and quasi-compactness we have a
finite cover of X by maximal affine invariant open sets. Then by Theorem 1.2.9 each of this
invariant sets is given by a toric variety of the form Uσ for some cone σ ⊆ NR. Then the
fan Σ generated from this cones induce exactly the variety X with which started. Also, by
maximality any other invariant affine open subset Uτ of X must be contained in one open
set Uσ from the ones we started with. Hence τ is a face of σ and then τ ∈ Σ.

3. Let O be a orbit of PΣ and define U = {x ∈ PΣ | O ⊆ O(x)} where O(x) is the orbit of the
point x. By Sumihiro’s theorem there is an open affine invariant subset containing U . Hence
we can use the affine version of the Orbit-cone correspondence to see that U is an invariant
affine open subset, hence of the form Uσ for some σ ∈ Σ and then O = O(σ).

4. If there is σ1 ∈ Σ1 and σ2 ∈ Σ2 such that σ1 ⊂ σ2 then by Theorem 1.2.12 we have a unique
toric map Uσ1

→ Uσ2
. Gluing this maps we get a toric morphism PΣ1

→ PΣ2
.

In the other hand, take a toric morphism f : PΣ1 → PΣ2 and σ1 ∈ Σ1. As f is equivariant
f(O(σ1)) is also an orbit of PΣ2 and then is of the form O(σ2) for some σ2 ∈ Σ2. If τ1 is a face
of σ1 we have O(τ1) ⊆ O(σ1) and hence f(O(τ1)) ⊆ f(O(σ1)) ⊆ O(σ2) so f(O(τ1)) = O(τ2)
for some face τ2 of σ2. From this using Corollary 1.3.5 we get

f(Uσ1) = f(∪τ⊂σO(τ)) ⊆ ∪τ⊆σ2O(τ) = Uσ2

as we wanted.
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Relaxing the affine condition allow us to have proper and projective toric variaties. Luckily we
have good criteria to identify this properties in terms of the associated fans, to state them we need
the definition of complete fan and polytopal fan. We refer the reader to [?] for this.

Now we can state each criterion

Theorem 1.4.3. A toric variety PΣ is

1. proper iff Σ is a complete fan

2. projective iff Σ is a polytopal fan

Proof. The proof of 1. is contained in [Ful93] section 2.4. and 2. is proved at [Ewa96] section
VII.3.

1.5 Equivariant Sheaves of Fractional Ideals Over Toric Va-
rieties

Fix a fan Σ on NR and call by X = PΣ its associated toric variety.

In this section we will classify certain coherent sheaves over X well behaved with respect to the
action of the torus. This objects will be understood in terms of certain piecewise linear concave
function attached to them and its understanding will give us an interpretation for the Picard group
and the equivariant part of the class group of the variety.

If we denote by i : T ↪→ X the inclusion morphism then i∗(OT ) is a quasi-coherent OX -
submodule of the sheaf KX of rational functions over X and it is equipped with an action of T
given by

(α · f)(x) = f(α−1x) ∀α ∈ T, ∀f ∈ i∗(OT )(Uσ), ∀σ ∈ Σ

The sheaves we are going to classify are the coherent sheaves F contained on i∗(OT ) such
that we can restrict the action above to them. We will call these sheaves equivariant sheaves of
fractional ideals.

Notice that for such an F we have F(T ) ⊆ Γ(OT ). This allow us to look at the variety V (F(T ))
which from the T -invariance is either ∅ or T , then by the coherent hypothesis F|T is either 0 (from
where F = 0) or OT . This implies that all the interesting behavior of F occurs outside T . To
understand this behavior we introduce the order function of F

OrdF : |Σ| =
⋃
σ∈Σ

σ → R.

It is defined as follows:

First, we define it on lattice points a ∈ NR ∩ |Σ|. For this notice that, because of Proposition
1.3.1, a is attached to a function

λa : Spec k[x]→ X

so we can define
Ord(F)(a) := Ord0(λ∗aF)

Let’s understand this definition. Taking σ ∈ Σ such that a ∈ σ we can restrict the codomain
of λa to Uσ.

Now Uσ = SpecRσ where Rσ =
⊕
r∈M

r≥0 on σ

kχr and as F is coherent F(Uσ) is a finitely generated

Rσ-submodule of F(T ) = Γ(OT ), say

Jσ :=

N∑
i=1

Rσχ
ri ⊆

⊕
r∈M

kχr.

9



From this, as in affine varieties the pullback of a coherent OX -module is the OX -module induced
by the extension of coordinates of its global sections, we have

λ∗a(F) = λ∗a(F|Uσ ) = (Jσ ⊗Rσ k[x])∼ =

(
N∑
i=1

k[X]X〈ri,a〉

)∼
To see this last isomorphism notice that under the isomorphism Rσ ⊗Rσ k[x] ∼= k[x] the set

of generators {χri ⊗ p | p ∈ k[x], i = 1, . . . , N} of Jσ ⊗Rσ k[x] is send to {x〈ri,a〉p | p ∈ k[x], i =
1, . . . , N} as

χri ⊗ p = 1⊗ λa(χri)p = 1⊗ x〈ri,a〉p.

Then OrdF(a) = mini〈ri, a〉.

This allow us to extend OrdF to all σ by the formula above, i.e,

OrdF(x) = min
i
〈ri, x〉 ∀x ∈ σ

and by doing the same for the other cones in Σ we can defined OrdF for all |Σ|.

With this construction we can state all the results of this section.

Theorem 1.5.1. Let Σ be a fan, X = PΣ its induced toric variety and F a equivariant coherent
subsheaf of i∗(OT ). Then

I. The function OrdF satisfies the following properties

(a) OrdF(λx) = λ ·OrdF(x), ∀λ ∈ R+

(b) OrdF is continuous and piecewise-linear.

(c) OrdF(N ∩ |Σ|) ⊆ Z
(d) OrdF is concave on each σ

A function satisfying all this conditions will be called an order function. Conversely, any
function satisfying this conditions is of the form x 7→ mini〈ri, x〉 for some ri ∈M .

II. Take an order function f : |Σ| → R. For all σ ∈ Σ we put

(Jf )σ =
⊕
r∈M

r≥f on σ

kχr

Then (Jf )σ is a T -invariant Γ(OUσ )-module and the sheaves (Jf )∼σ can be glued together to
obtain a coherent sheaf Ff of equivariant fractional ideals contained in i∗(OT ).

Moreover, the sheaf Ff is complete as a sheaf of fractional ideals. This means that each (Jf )σ
above is a complete fractional ideal in the following precise sense:

Given a domain A with quotient field K and J ⊆ K a fractional ideal we say that
J is complete if for all z ∈ K satisfying an equation of the form

zq + a1z
q−1 + · · ·+ aq = 0 with ai ∈ J i (∗)

we have z ∈ J

III. The constructions above satisfy the following properties.

(a) OrdFf = f

(b) FOrdF is the completion of F
(c) The maps F 7→ OrdF and f 7→ Ff define a bijection between the set of coherent sheaves
F of equivariant complete fractional ideals over X and the set of order functions f :
|Σ| → R.

(d) F ⊆ Ff ⇐⇒ OrdF ≥ f
(e) OrdF1F2 = OrdF1 + OrdF2
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(f) F|Uσ = OUσ ⇐⇒ OrdF ≡ 0 on σ

(g) There is a toric isomorphism of OX-modules between Ff1 and Ff2 if and only if f1− f2

is linear on |Σ|.

IV. Given a cone σ we denote by sk1 σ the set of all primitive integral vectors inside its one
dimensional faces and for a fan Σ we define sk1 Σ =

⋃
σ∈Σ sk1 σ. For a function h : sk1 σ → Z

we define its convex interpolation as the least order function h̃ : σ → R majorizing h on σ.
In other words

h̃(x) = min
r≥h over sk1 σ

〈r, x〉

where the minimum goes over all integral linear functional r ∈M that majorizes h over sk1 σ.
For a function h : sk1 Σ → Z we define its convex interpolation as the function h̃ : |Σ| → R
given as the convex interpolation of h restricted to each cone. In particular it is an order
function.

With this notation we have the following properties:

(a) F−1 = Fg where g is the convex interpolation of −OrdF on sk1 Σ

(b) (F−1)−1 = F if and only if F is complete and Ord F is the linear interpolation of an
integral function over sk1 Σ. Moreover, there exists a bijective correspondence between
the set of T -invariant Weil divisors and the set of integral functions on sk1 Σ.

(c) The following are equivalent:

i) F is invertible
ii) FF−1 = OX
iii) OrdF is linear on each σ.

(d) ΩnX
∼= Fk where k is the convex interpolation of the constant function with values −1

on sk1 Σ.

Proof.

I. All this properties follow directly from the formula defining the order function. For the con-
verse let f be an order function. As it is piecewise linear there are finitely many ri ∈MR such
that for each x ∈ |Σ| there is an i with f(x) = 〈ri, x〉. Then as f is concave f(x) = mini〈ri, x〉
and as f(N ∩ |Σ|) ⊆ Z we can take each ri in M .

II. As (Jf )σ is closed under multiplication by elements of Rσ we see that it is an Rσ-module.
Also if h =

∑
r arχ

r ∈ (Jf )σ and α ∈ T we have α · h =
∑
r arα

−rχr ∈ (Jf )σ so (Jf )σ is
T -invariant Rσ-module. Next to prove that these modules can be glued together is enough
to prove that

(Jf )∼σ |Uτ = (Jf )∼τ

For this notice that, as Uτ is a principal open subset for g =
∏

r∈M∩σ∨
r=0 on τ

χr, we have

Γ(Uτ , (Jf )∼σ ) =

 ⊕
r∈M

r≥f on σ

kχr


g

=
⊕
r∈M

r≥f on τ

kχr = Γ(Uτ , (Jf )τ )

Now to see that Ff is complete we need to prove that each (Jf )σ is complete. For this notice
that if f(x) = min

i=1,...,s
{〈ri, x〉} for all x ∈ σ then

R :=

s∑
i=1

Rσχ
ri =

⊕
r∈M

r≥ri on σ
for some i

kχr ⊆
⊕
r∈M

r≥f on σ

kχr = (Jf )σ

and we will prove that (Jf )σ is exactly the completion of R and thus complete.
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We start by proving that there is an equation over R of the form (∗) for each χr ∈ (Jf )σ, this
will prove that (Jf )σ is contained in the completion of R. From χr ∈ (Jf )σ we have r ≥ f
on σ and if σ∨ = cone(v1, . . . , vn) we have 〈x, vj〉 ≥ 0 for all 1 ≤ i ≤ n exactly when x ∈ σ,
hence

min{〈x, ri − r〉, 〈x, vj〉}i,j ≤ 0 ∀x ∈ NR

Now define h(x) = −min{〈x, ri−r〉, 〈x, vj〉}i,j = max{〈x, r−ri〉, 〈x,−vj〉}i,j . This is a convex
function that attains its minimum at 0. Hence, 0 belongs to the subgradient ∂h(0), but this
subgradient is also given by conv(

⋃
i,j ∂〈·, r − ri〉 ∪ ∂〈·,−vj〉) = conv{r − ri,−vj}i,j and so

there are integers ni,mj ≥ 0 not all zero such that∑
i

ni(r − ri) +
∑
j

mjvj = 0

and then
∑
i

niri +
∑
j

mjvj =

(∑
i

ni

)
r, so for N =

∑
ni we have

(χr)N = χ〈
∑
j mjvj〉

∏
i

(χri)ni

and this is a monic equation for χr over R of the desired form.

In the other hand, if χr is in the completion of R then

χrm + a1χ
r(m−1) + · · ·+ am−1χ

r + am = 0

for some ai ∈ Ri. Looking only at the degree rm part of the equation we can assume that
each non zero ai is a character, taking some N with aN 6= 0 we have aN = χc · χ

∑
njrj with∑

nj = N and c ≥ 0 as a function over σ, then

rm = deg(aN ) + r(m−N) ⇐⇒ r = c/N +
∑ njrj

N

=⇒ r ≥ njrj
N

over σ

=⇒ there is some j such that r ≥ rj over σ
⇐⇒ r ≥ f over σ
⇐⇒ χr ∈ (Jf )σ

Hence (Jf )σ is the completion of R and in particular is complete.

III. (a) As F is coherent we have

Γ(Uσ,Ff ) =
⊕
r∈M

r≥f on σ

kχr =

m∑
j=1

Rσχ
sj

for some sj ∈M from where OrdFf = minj〈sj , x〉 = f .
(b) If Γ(Uσ,F) =

∑
iRσχ

ri we have OrdF = mini〈ri, x〉 on σ and then as it was shown in
the proof of part II. the sheaf FOrdF is the completion of

∑
iRσχ

ri = F .
(c) This follows formally from parts (a) and (b).
(d) F ⊆ Ff ⇐⇒ F|Uσ ⊆ Ff |Uσ for every σ ∈ Σ. As these sheaves are coherent, if

Γ(Uσ,F) =
∑
iRσχ

ri we have

F|Uσ ⊆ Ff |Uσ ⇐⇒
∑
i

Rσχ
ri ⊆

⊕
r∈M

r≥f on σ

kχr ⇐⇒ ri ≥ f ∀i ⇐⇒ Ord F ≥ f

(e) Suppose Γ(Uσ,F1) =
∑
iRσχ

ri and Γ(Uσ,F2) =
∑
j Rσχ

si , then Γ(Uσ,F1F2) =
∑
ij Rσχ

ri+sj

so

Ord(F1F2)(x) = min
ij
〈ri + sj , x〉 = min

i
〈ri, x〉+ min

j
〈sj , x〉 = Ord F1(x) + Ord F2(x)
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(f) This follows from Γ(Uσ,OUσ ) = Rσχ
0 so Ord F(x) = 〈0, x〉 = 0

(g) Suppose f2 − f1 is linear, say f2 − f1 = s ∈ M . Then for any cone σ ∈ Σ we have the
isomorphism

ϕ : Γ(Ff1 , Uσ)→ Γ(Ff2 , Uσ)

χr 7→ χr+s.

And this glue to an isomorphism of OX -modules.

In the other hand, if there is a toric isomorphism of OX -modules ϕ : Ff1 → Ff2 then
for each σ ∈ Σ we have a toric isomorphism

ϕσ : Γ(Ff1 , Uσ)→ Γ(Ff2 , Uσ).

The T -equivariance implies that ϕσ(χr) = arχ
s for some ar and after renormalization

we can assume that ar = 1. Now we have an induced bijection between the exponents

ϕσ : {r ∈M | r ≥ f1 over σ} → {r ∈M | r ≥ f2 over σ}

And from ϕσ being a Rσ-module morphism we get

ϕσ(r + r′) = ϕσ(r) + r′ for all r′ ∈M with r′ ≥ 0 on σ

Now suppose for every r, r′ ∈M there is a r∗ ∈M such that r∗ ≥ r, r′ on σ. Then

ϕσ(r) + r∗ − r = ϕσ(r + r∗ − r) = ϕσ(r∗) = ϕσ(r′ + r∗ − r′) = ϕσ(r′) + r∗ − r′

and so ϕσ(r)−r = s is independent of r. Then ϕσ is given by χr 7→ χr+s and f1−f2 = s
over σ, varying sigma one get f1 − f2 = s over |Σ|.

To see that an upper bound r∗ exists for every r, r′, notice that r∗ ≥ r on σ iff r∗−r ∈ σ∨
and so the result follows from the fact that σ∨ has non empty interior (because σ is
strictly convex) and then after a translation you can put both −r,−r′ inside of it.

IV. (a) Fix σ in Σ. For r ∈M we have

χr ∈ Γ(Uσ,F−1) ⇐⇒ χr · Γ(Uσ,F−1) ⊆ Γ(Xσ,OXσ )

⇐⇒ r + {s ∈M | s ≥ Ord F on σ} ⊆ {s ∈M | s ≥ 0 on σ}
⇐⇒ r ≥ −Ord F on σ
⇐⇒ r ≥ g
⇐⇒ r ∈ Γ(Uσ,Fg)

where g is the convex interpolation of −Ord F on sk1 σ.

(b) By the part above we have (F−1)−1 = Ff with f the convex interpolation of the restric-
tion of Ord F to sk1 Σ. Then by III (c) this sheaf is equal to F iff the sheaf is complete
and OrdF = f .

Now let D be a Weil divisor on X. As X is a normal integral variety it correspond to
the coherent sheaf

OX(D)(U) = {f ∈ KX | (f) +D ≥ 0}

and we have OX(D)OX(D′) = OX(D +D′). Hence, OX(D)−1 = OX(−D) from where
(OX(D)−1)−1 = OX(D) and so OX(D) is complete and its order function correspond
to an integral function on sk1 Σ.

In the other hand, given an integral function over sk1 Σ we can take its convex interpo-
lation f : |Σ| → R and it correspond to a Ff such that (F−1

f )−1 = Ff . This property
translate to Ff being reflexive and as it is also of rank 1 (as it is a subsheaf of KX)
it must be of the form OX(D) for some T -invariant Weil divisor D over X (see [Sch],
Proposition 3.7).
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(c) (iii =⇒ i and ii) Suppose Ord F is linear on σ, say Ord F(x) = 〈r, x〉 ∀x ∈ σ. Then in
the finitely generated Rσ-module inducing F|Uσ

Jσ =

N∑
i=1

Rσχ
ri ⊂ Γ(OT )

we would have Ord F = mini 〈ri, x〉 = 〈r, x〉 from where there is an i such that 〈ri, x〉 =
〈r, x〉 on σ. For that i we have Jσ = Rσχ

ri so F|Uσ = χriOUσ and hence F is an
invertible sheaf.
In the other hand by IV (a) we have Ord F−1 = −Ord F and so by III (e) Ord(FF−1) =
F + F−1 = 0 from where FF−1 = OX using III (f).

(ii =⇒ i) Suppose FF−1 = OX . Then as all this sheafs are coherent we have for each σ

F(Uσ)F(Uσ)−1 = Γ(Uσ,OX)

From which 1 ∈ F(Uσ)F(Uσ)−1, i.e, 1 =
∑
j gjg

′
j with gj ∈ F(Uσ) and g′j ∈ F(Uσ)−1.

Then for every h ∈ F we have

h = h · 1 =
∑
j

gjhg
′
j ∈ gF(Uσ)F(Uσ)−1 = gΓ(Uσ,OX)

so F|Uσ ≤ gOX |Uσ . As the other implication is trivial we conclude F|Uσ ∼= OX |Uσ .
As this isomorphism is equivariant it gives an equality F|Uσ = χrOX |Uσ from which
Ord F(x) = 〈r, x〉 over σ.

(i =⇒ iii) By Proposition 4.2.2 on [CLS11] we have that Pic(X) is trivial for every affine
toric variety X. Now if F is an invertible sheaf over X, for each σ ∈ Σ we have that
F|Uσ is trivial and hence it is isomorphic to F|Uσ . By III (g) this happens iff Ord F is
linear over σ.

(d) The only differential of degree n over the torus T = Spec k[x±1
1 , . . . , x±1

n ] up to constant
is given by

w =
dx1

x1
∧ · · · ∧ xn

xn

This differential form has pole of order 1 on each orbit of codimension 1. Hence for
every one parameter subgroup λa : Spec k[x, x−1] → X with a ∈ N primitive we have
Ord0(λ∗a(w)) = −1 and the result follows.

1.6 Equivariant Resolution of Singularities of Toric Varieties
Now we use our understanding on equivariant sheaves of fractional ideals from the last sections to
resolve the singularities of a toric variety in a way compatible with the action of the torus.

For this we let F an equivariant sheaf of fractional ideals as in last section. The blow up of X
with respect to these fractional ideal is defined as the morphism

X̃ = Proj
X

(
n⊕
k=0

Fk
)

f−→ X

and it satisfy that f∗(F) is an invertible sheaf over Y . Moreover this is the minimal variety sat-
isfying this: Every morphism Y → X such that the pullback of F along it is an invertible sheaf
factorize uniquely along X̃ → X.

Now recall that this variety X̃ is not normal in general (it is for example when F defines a
reduced closed subscheme of X, but this is not necessarily the case). For that reason we will work
with the normalization of X̃ and we will call this variety BF (X).
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Using the universal property of the normalization we conclude that BF (X) satisfy the following
universal property: Any birational map Y f−→ X from a normal variety Y to X such that induced
sheaf of fractional ideals f∗F is invertible must factorize uniquely along BF (X).

Using this construction we present the following result.

Theorem 1.6.1. Fix a fan Σ over NR, let X = PΣ and F an equivariant sheaf of fractional ideals
over X. Then BF(X) defined above, as an allowable embedding of T , is described by the fan of ΣF
over NR obtained by subdividing all the σ ∈ Σ into the biggest polyhedra on which Ord F is linear.

Proof. From the explicit construction of f : BF (X)→ X we conclude that f−1(T ) = T ⊆ BF (X)
and from this BF (X) is a normal toric variety. Let Σ′ denotes its associated fan, we need to prove
Σ′ = ΣF . For this denote X̃ the toric variety attached to the fan ΣF . By theorem 1.4.2 there is a
toric morphism g : X̃ → X and it is constructed in the following way.

For any τ ∈ ΣF there is a σ ∈ Σ such that τ ⊆ σ. Then Uτ → Uσ is given by the inclusion
of rings Rσ ⊆ Rτ . Then if F|Uσ = J̃σ is generated by Jσ =

⊕
iRσχ

r
i we have that Jσ ⊗Rσ Rτ is

generated by χri ⊗ 1 as an Rτ -module and so we conclude

OrdX F = min〈ri, x〉 = OrdX̃f
∗(F) ∀x ∈ τ

Hence by theorem 1.5.1 part IV (c) we have that f∗(F) is an invertible sheaf. Then by the univer-
sal property of BF (X) discused above there is a morphism BF (X)→ X̃ and from Theorem 1.4.2
again we conclude that Σ′ is a subdivision of ΣF from which Σ′ = ΣF .

This theorem together with 1.2.11 translate the problem of finding a resolution of singularities
for X into a combinatorial problem. We will use this approach to prove the following.

Theorem 1.6.2. Let X = PΣ be a toric variety. Then there exists an equivariant sheaf of ideals
F ⊆ OX such that BF (X) is non singular.

Using Theorem 1.2.11 and Theorem 1.6.1 above in order to prove this we need to find an or-
der function f : F → R such that each cone in Σf is smooth. Also, notice that the condition
f(|Σ| ∩N) ⊆ Z in the definition of order function can be relaxed to f(|Σ| ∩N) ⊆ Q since then a
suitable multiple of f will be an order function and Σf doesn’t get affected. Now the objective of
this section is to construct an example of such a function.

Let us start defining for each simplicial cone, i.e, a cone of the form σ = cone(x1, . . . , xn) ⊂ NR
with x1 . . . , xn linearly independent, its multiplicity as the rank of the subgroup

∑
i Zxi inside the

lattice N ∩
∑
iRxi. This multiplicity is denoted by mult(σ) and σ is smooth iff mult(σ) = 1.

The idea of the construction is to proceed by induction in the number of cones inside Σ.

We will use the following lemma for the inductive step.

Lemma 1.6.3. Let σ be a polyhedral cone and f0 a piecewie linear concave rational function de-
fined over its boundary ∂σ. Let x0 ∈ N ∩ int(σ).

The function f : σ → R defined by

f(αx0 + βy) = αC + βf0(y), y ∈ ∂σ, α, β ≥ 0

where C ∈ Q+.

Then, if C is large enough, f is concave and the associated polyhedra of f are of the form
cone(τ ∪ {x0}) for τ ∈ Σf0 .

Using this result suppose we have a function f0 :
⋃
σ∈Σ\{σ0} → R satisfying all properties we

need over this domain. Then we can use the lemma above to extend f0 to a function f over |Σ|
such that the cones added to Σf0 are all simplicial, let F denote the set of all this extensions.

We define the multiplicity of f as mult(f) := maxτ∈Σf (mult)(τ), so the objective is to show
there is a f ∈ F with mult(f) = 1.

We do this by, given an f ∈ F , constructing another function f ′ ∈ F with fewer cones τ ∈ Σf ′

such that mult(f ′) = mult(τ). The following easy results assure that we can always do this.
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Lemma 1.6.4. Let f be a convex piecewise linear rational positive function on a polyhedron σ.
Let x0 ∈ N ∩ Σ and let us consider the set

Σ = {τ ∈ Σf | x0 /∈ τ} ∪ {cone(τ ∪ {x0}) | x0 /∈ τ, τ ∈ Σf and τ is the face of some τ ′ s.t x0 ∈ τ ′}

Then Σ is a fan with support σ. If for ε ∈ Q>0 we define fx0,ε on σ by

fx0,ε =

{
f(x) if x ∈ τ and x0 /∈ τ, τ ∈ Σ

f(x) + εg(x) if x ∈ τ and x0 ∈ τ, τ ∈ Σ

where g is a linear function such that g(x0) = 1 and g|τi ∼= 0. Then for ε small enough fx0,ε is
still concave and its associated fan is Σ.

Lemma 1.6.5.

1. If τ1 and τ2 are two simplicial cones in NR such that τ1 is a face of τ2, then mult(τ1) | mult(τ2).

2. Let τ = 〈x1, . . . , xN 〉 be a simplical cone such that the xi are primitive and let x = α1x1 +
· · · + αlxl, 0 < ai < 1, l ≤ N be a primitive lattice point. For 1 ≤ i ≤ l let τi =
cone(x1, . . . , x̂i, . . . , xN 〉), then

mult(cone)(τi ∪ {x}) = αi ·mult(τ)

So we can conclude the induction and with this the proof of Theorem 1.6.2.

1.7 Cohomology and convexity
If X is a toric variety containing a torus T , we will denote by ΣX its associated fan and the support
of ΣX by |X|. Further given a toric morphism f : X → Y we represent by |f | : |X| → |Y | the
associated function between the fans.

Let J be a complete equivariant sheaf of fractional ideals on a toric variety X. Set j = Ord J .
Define the sheaf of (absolutely regular) differentials with coefficients in J , written Kj , by the
formula:

Kj(Uσ) =

 ⊕
r∈M

〈r,x〉>j(x) on σ\{0}

kχr


∼

For all σ ∈ ΣX . Clearly, Kj is a complete equivariant sheaf of fractional ideals.

If J = OX , then j = 0 and K0 =
ˆ̂
ΩX because by Theorem 1.5.1 ˆ̂

ΩX = Fδ where δ is the
convex interpolation of 1 on sk1(ΣX). Also, let µ : X → X be a toric morphism. Let j = j ◦ |µ|.
Then, µ∗(s) is a section of Kj for every section s of Kj . Furthermore, if µ is proper, we have µ∗Kj
is exactly Kj .

Let J be a equivariant sheaf of fractional ideals on a toric variety X. As J =
⊕

χ J χ, we have
thatHi(X,J ) =

⊕
χH

i(X,J χ). Obviously, Hi(X,J χ) = Hi(X,J )χ. Therefore, the cohomology
Hi(X,J ) can be computed by

Theorem 1.7.1. For any character χ of T , we have

Hi(X,J )χ ' Hi
A(|X|, k)

Where the right hand side is the relative cohomology with respect to a closed subset A of |X| that
is either:

a) A = |U | where U is the largest T -invariant open in X such that χ ∈ J (U)

b) in case J is complete.

A = {x ∈ |X| | 〈χ, x〉 ≥ Ord J (x)}.

Furthermore, if j =Ord(J ), the cohomology of the differentials Kj is given by the formula
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Hi(X,Kj)χ ' Hi
B∗(|X|, k)

Where B = {x ∈ |X| : 〈χ, x〉 ≥ j(x)}, B∗ = B −
⋂

(open unit ball in NR)

Proof.
I) Assume X is affine. Then by Serre’s Vanishing Theorem and by an explicit computation we

have

Hi(X,J ) = 0 for i > 0 and

H0(X,J )χ =

{
kχ, if χ ∈ J (X),
0 otherwise.

On the other hand, both of the opens |X| − A are convex. |X| − A is empty if and only if
χ ∈ J (X). The long exact sequence

0→ H0
A(|X|, k)→ H0(|X|, k)→ H0(|X| −A, k)→ H1

A(|X|, k)→ · · ·

has zero at the dots because |X| and |X|−A are conctractible. therefore, Hi
A(|X|, k) = 0 for i > 0

and H0
A(|X|, k) =

{
k, if A = |X|,
0 otherwise.

This completes the affine case of the first isomorphism.

II) Let {Ui} be a covering of X by T -invariant open affines. Let σi be the simplex |Ui|.
Intersections of Ui’s are open affines and these correspond to intersections of the σi’s. By part I,
Hi⋂

(σj∩A)(
⋂
σj , k) = 0 if i > 0. Hence by Leray’s theorem,

Hi
A(|X|, k) ' Ĥi

A({σj}, k)

Also Serre’s theorem says that

Hi(X,J )χ ' Ĥi({Uj},J )χ

Again by part I, the two Čech complexes

ĈiA({σj}, k) and Ĉi({Uj},J )χ

Are isomorphic. Thus

Ĥj
A({σi}, k) ' Ĥj({Ui},J )χ

This completes the proof of the first isomorphism. The proof of the second isomorphism is
formally the same.

Let φ : X → Y be a proper toric morphism. Let J = Ff be a complete sheaf on Y for some
order function f : |Y | → R+ and denote g = f ◦ |φ|. Then we have a φ-homomorphism Ff → Fg.

Corollary 1.7.2. In the above situation,

a) Hi(X,Fg)→ Hi(Y,Ff ) is an isomorphism for all i.

b) Hi(X,Fg)→ Hi(Y,Kf ) is an isomorphism for all i

c) Riφ∗Fg = 0 for all i > 0 and φ∗Fg ' Ff

d) Riφ∗Kg = 0 for all i > 0 and φ∗Kg ' Kf .

Proof. |φ| : |X| → |Y | is a homeomorphism. The second A and the B in the theorem for X and Y
are equivalent under |φ|. The theorem says that the cohomology groups are topological invariants
of X,A and B. This proves a) and b). Statements c) and d) follow formally from a) and b) when
Y is affine.
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Corollary 1.7.3. Let X be a toric variety and J be a complete equivariant sheaf of fractional
ideals. Set f =Ord J . Assume |X| is convex and f is convex. Then, Hi(X,J ) is zero for all
i > 0.

Proof. For a given character χ, let A be given by part b) of Theorem 1.7.1. By assumption, |X|
and |X| − A are contractible is |X| 6= A. The conclusion follows from the long exact sequence of
the relative cohomology used in the proof of the theorem.

First, let’s do a numerical corollary of the theorem.

Corollary 1.7.4. Let J = Ff be a complete equivariant sheaf of ideals on an affines toric va-
riety. Assume that the support of OX/J is the zero-dimensional orbit. Then, the function dim
Γ(X,OX/Fnf ) is a polynomial for all integers n 6= 0. the degree of this polynomial is the dimension
of X.

Proof. Let k be the dimension of X. Let Y be the normalization of X after J is blown up. The
morphism µ : Y → X is proper. We have µ∗Fnf ' (µ∗Ff )⊗n as µ∗Ff ≡ Q is an invertible ideal.
Let F be the closed subscheme of Y defined by Q. Set K = Q/Q2,which is an ample invertible
sheaf of F . As F is projective of dimension k − 1,

χ(F,K⊗n) =
∑

(−1)ihi(F,K⊗n)

is a polynomial for all n and has degree k − 1 by Serre’s form of Hilbert’s theorem.
Claim χ(F,K⊗) = dim Γ(X,Fnf/F(n+1)f ) for n ≥ 0. This claim implies the corollary. For,

dim Γ(X,OX/Fnf ) =
∑
n>i≥0

dim Γ(X,Fif/F(i+1)f ) =
∑
n>i≥0

χ(F,K⊗i)

To prove the claim, consider the direct images by µ of the exact sequence

0→ Q⊗n+1 → Q⊗n → K⊗n → 0

By the first corollary, Q⊗n’s have no higher direct images. Hence K⊗n has none. Furthermore,
the sequence

0→ µ∗(Q⊗n+1)︸ ︷︷ ︸
= F(n+1)f

→ µ∗(Q⊗n)︸ ︷︷ ︸
= Fnf

→ µ∗(K
⊗n)→ 0

is exact. Thus, by Leray’s spectral sequence,

Hi(F,K⊗n) ' Hi(X,Fnf/F(n+1)f )

These last group are zero if i > 0. Therefore,

χ(F,K⊗n) = h0(F,K⊗n) = dim Γ(X,Fnf/F(n+1)f )

Before studying the singularities of toric varieties further, let’s consider some of the geometric
meaning of the convexity condition in corollary 1.7.2

Lemma 1.7.5. Let X be a toric variety.

a) |X| is convex if and only if X is proper over an affine.

b) A complete T -sheaf of fractional ideals on X, J = Ff ,is generated by its global sections if
and only if f = Infχ≥fon|X|χ In this case f is convex.

Proof. a) let λ : Gm → T be a 1-P.S. of T . Assume that X is proper over an affine. Then, lim
t→0

λ(t)

exists in X if and only if, for all f ∈ Γ(X,OX), f ◦ λ is regular at zero.
Therefore λ ∈ |X| ∩N if and only if < α, λ >≥ 0 for all α ∈ |X|∨ ∩M . Therefore |X| = |X|∨∨,

hence |X| is convex. To prove the converse, let

Y = Speck[. . . , χα, . . .]α∈M∩|X|∨

and note that there is a caonical map f : X → Y It follows easily that f is proper using the
valuative criterion.

b) Obviously
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Theorem 1.7.6. Let X be a toric variety and L = Ff be an invertible equivariant sheaf. Then,
L is ample if and only if f is strictly concave in the sense that for each σ ∈ ΣX there exists a
character χ and positive integer n, for which

a) χ ≥ nf on |X|

b) σα = {x ∈ |X| : 〈χ, x〉 = nf(x)}

Proof. L is ample if and only if there is an n > 0 and characters {χβ} such that a) the χβ ’s are
sections of L⊗(nβ), form an affine cover of x. But then any invariant affine U must be contained
in one of the Uβ ’s hence there will also be a section χ′ ◦ χmβ of L⊗n′ such that U is the open set
where this generates L⊗n′ . Since the subsets |U |, and σ in |X| are the same, the theorem is a
direct translation of this criteion.

1.8 Generalities on rational Resolutions
Let f : X → S be a proper morphism between smooth varieties. Denote the dimensions of X and
S by x and s. Let L be an invertible sheaf on X. A special case of the duality theorem for the
proper morphism f is

Theorem 1.8.1. Assume Rif∗(ωXX ⊗ L⊗−1) = 0 for i > 0. Then there are natural isomorphisms

Rif∗L ' Exts−x+i
OS (f∗(Ω

X
X ⊗ L⊗−1),ΩSS)

Recall that a coherent sheaf F on S is called Cohen-Macaulay of pure dimension k if and only
if Exts−jOS (F,ΩSS) is zero unless j = k ≡dimension of the support of F . This fact together with the
theorem immediately implies

Corollary 1.8.2. Assume Rif∗(ωXX ⊗L⊗−1) and Rif∗L are zero for i > 0. Then f∗(ωXX ⊗L⊗−1)

and f∗L are Cohen-Macaulay of pure dimension x. In fact, Exts−jOS (−,ΩSS) interchanges them.

Let’s call one of these shaves the Ext-dual of the other.
Let g : X → Y be a proper birational morphism with X smooth. Call g a resolution (of the

singularities) of Y . Define such a morphism g a rational resolution if

a) Y es normal; i.e., OY → g∗OX is an isomorphism,

b) Rig∗OX is zero for all i > 0,

c) Rig∗ωXX is zero for all i > 0

Remark 1.8.3. Condition c) is always satisfied in characteristic zero by a generalization of Ko-
daira’s vanishing theorem. �

Consider the two more conditions on the singularities of Y

d) OY is Cohen-Macaulay,

e) The natural homomorphism g∗Ω
X
X → ωY is a isomorphism where ωY is the sheaf on Y , which

is isomorphic to Exts−xOS (OY ,OS) if Y were embedded in a smooth S. Also, if Y es a normal
variety, ωY is isomorphic to the double dual of the highest differentials, ΩYY

Proposition 1.8.4. Assuming the above conditions c), we have that a) and b) are equivalent to
d) and e).

Proof. The problem is local on Y . So, assume Y is embedded of a smooth variety S by i. Set
f = i ◦ g. As condition c) is verified, the theorem gives us isomorphisms

i∗R
ig∗OX ' Exts−x−iOS (f∗Ω

X
X ,Ω

S
S) (∗)

Thus, b) is true if and only if f∗ΩX or g∗ΩX is Cohen-Macaulay. If a) and b), we have that
OY ' g∗OX is the Ext-dual of the Cohen-Macaulay sheaf f∗ΩXX . Thus, OY is Cohen-Macaulay
and the homomorphism in e) is the Ext-dual of the isomorphism OY → g∗OX . Hence, a) + b)
=⇒ d) + e)
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Assume d) and e) are verified. Then, OY is Cohen-Macaulay with dual Cohen-Macaulay sheaf
ωY by d). By e), we have that g∗ΩXX is Cohen-Macaulay. Equation (∗) implies condition b) and
that g∗OX is the Ext-dual of g∗OX . Further,the Ext-dual of the homomorphism OY → g∗OX is
an isomorphism. Hence, d) + e) =⇒ a) + b).

The forward implication gives an easy way to check Cohen-Macaulay-ness and to find Ext-duals.
In characteristic zero, when Y is normal, Grauert and Riemenscheider have given an intrinsic
characterization of the sheaf g∗ΩXX which is independent of the resolution g. In this case, the
conditions d) and e) essentially deal only with Y . One says that Y has rational singularities if
these conditions d) and e) are verified.

Returning to toric variety, we can apply the above theory to prove

Theorem 1.8.5. a) Any toric variety Y is Cohen-Macaulay.

b) ωY is ˆ̂
ΩY .

c) Any proper T -invariant resolution of the singularities of Y is rational.

Proof. By Theorem 1.6.2, there is a proper toric morphism f : X → Y with X smooth. By
Corollary 1 of Theorem 1.7.1, the conditions b) and c) in the definition of rational resolutions
are verified. Thus, the third statement in the theorem follows because we are dealing only with
normal toric varieties. The last general theorem shows that the first two statement follows from
the third.
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Chapter 2

The Semistable Reduction Theorem

We have 2 goals in this chapter: the first is to generalize the concept of toric variety of Chapter
I to the concept of toroidal variety. This are embeddings of non-singular varieties U in normal
varieties X such that formally at each x ∈ X \U the pair (X,U) is isomorphic to

(
T , T

)
for some

torus T and equivariant T ⊆ T . This allows us to apply an analysis similar to that of Chapter I
to a much greater range of examples. In particular we want then to apply the theory to prove the
famous:

Theorem 2.0.1 (Semi-stable reduction theorem). Assume char(k) = 0. Let C be a non-singular
curve, 0 ∈ C a point and f : X −→ C a morphism of a variety X onto C such that

res f : X \ f−1(0) −→ C \ {0}

is smooth. Then there is a finite morphism π : C ′ −→ C with C ′ non-singular, π−1(0) = {0′}
and a proper morphism p as follows

X ′

X X ×C C ′

C C ′

p

f ′f

π

such that

1. p is an isomorphism over C ′ \ {0′}.

2. p is projective; in fact p is obtained by blowing up a sheaf of ideals I with I |C′\{O′} ∼=
OX×CC′ |C′\{0′}.

3. X ′ is non-singular, and the fibre f ′−1(0′) is reduced, with non-singular components crossing
normally.

As we will see, everything here is an easy consequence of Hironaka’s resolution theorems except
for ”reduced”.

2.1 Toroidal Varieties
Definition 2.1.1. Let X be a normal variety of dimension n, U a smooth Zariski open set of
X. We say that U ⊆ X is a toroidal variety if for every closed point x in X there exists an n-
dimensional torus T , an affine toric variety Xσ containing T , a point t in Xσ and an isomorphism
of k-local algebras

ÔX,x
∼−→ ÔXσ,t

such that the ideal in ÔX,x generated by the ideal of X \U corresponds under this isomorphism
to the ideal in ÔXσ,t generated by the ideal of Xσ \ T . �
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By restricting Xσ if necessary, we can assume that the orbit of t is closed in Xσ: such an affine
toric variety plus a formal isomorphism as above will be called a local model at x.

Notice that it follows formally from this definition and from the fact that Xσ \ T is purely
1-codimensional, that X \ U is also 1-codimensional (see [Gro67] Theorem 7.1.3): we shall write

X \ U =
⋃
i∈I

Ei,

where the Ei’s are irreducible subvarieties of dimension n− 1.

To get an idea of this definition, let us assume for a moment that dim X = 2: in that case the
Ei’s are curves and let x be a point in

⋃
i∈I

Ei. Then:

a.either x is a non-singular point of
⋃
i∈I

Ei: i.e., x is in only one Ei and is non-singular on it. Then in

our local model t is in a dimension 1 orbit, Xσ is non-singular at t, hence X is non-singular
at x,

b.or x is singular on
⋃
i∈I

Ei: then {t} is a dimension 0 orbit, (Xσ \ T )red has an ordinary double

point at t, hence x either (b1) belongs to two components Ei1 and Ei2 which are non-singular
at x and meet transversaly, or (b2) belongs to one Ei with an ordinary double point at x.
Moreover the singularity of X at x is quite elementary: i.e., formally X ∼= A2/(cyclic gp.)
which the two branches of

⋃
i∈I

Ei being the image of the two coordinate axes.

We can associate to this situation a graph, the dual graph of the configuration, by attaching a
vertex to each Ei, an edge between two vertices corresponding to a singularity of type (b1) and a
loop through a vertex corresponding to a singularity of type (b2)

We define also a stratification 1 on X as follows:

1. the set U

2. the connected components of the sets Ei \
{
double points of

⋃
i∈I Ei

}
1a stratification on a variety X is a finite set S1, S2, . . . , Sn of locally closed subsets, called the strata, such that

every point of X is in exactly one stratum and such that the closure of a stratum is a union of strata.
If Y is a stratum, we define

Star Y =
⋃

Strata Z
s.t Y⊆Z̄

Z = X \
⋃

Strata Z
s.t Z∩Y =∅

Z
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3. the double points of
⋃
i∈I Ei

Now we can go back to our general situation described in the Def. 1: we shall restrict ourselves
to the case where Ei are normal varieties and we shall say in this case that U ⊆ X is a toroidal
variety without self-intersection.

Proposition 2.1.2. Let U ⊆ X be a toroidal variety without self-intersection and X\U =
⋃
i∈I Ei.

Then for any subset J ⊆ I,

•
⋂
j∈J

Ej is normal

•

⋂
j∈J

Ej

 \(⋃
i/∈J

Ei

)
is non-singular.

The components of the sets

⋂
j∈J

Ej

 \(⋃
i/∈J

Ei

)
define a stratification of X; moreover the

components of
⋂
i∈J

Ei are the closure of the strata. Finally, if x ∈ X and (Xσ, t) is a local model

at x, then the closures of Z of the strata Z, with x ∈ Z, correspond formally to the closures of the
orbits in Xσ; in particular if x ∈ Stratum Y , then Y corresponds formally to O(t) itself.

Proof. Let Oν′ , ν ∈ I ′, be the orbits of codimension 1 in Xσ, corresponding to the vertices of σ
by the Orbit-Cone Correspondence. Then the sets Oν are normal and if we denote Ôν the inverse
image of Oν in Spec ÔXσ,t, then Ôν is still reduced, irreducible, and normal; hence are the analytics
branches of Xσ \ T .

On the other, let IX = {i ∈ I | x ∈ Ei}. Then since the Ei are assumed normal, Êi, i ∈ I, are
the analytic branches of X \ U at x. Thus, the formal isomorphism

Spec ÔX,x
≈−→ Spec ÔXσ,t,

induces an isomorphism of IX and I ′ under which the Êi correspond to the Ôν . Now, if J
is any subset of IX and J corresponds to J ′ ⊆ I ′, let τ be the smallest face of σ containing the
vertices ν, ν′ ∈ J ′. Then it follows from the Orbit-Cone Correspondence that

Oτ =
⋂
ν∈J′
Oν .

Since we know Oτ is normal, it follows that Ôτ is normal and corresponds formally to
⋂
i∈J Êi.

Therefore
⋂
i∈J Ei is normal at x. Since x is arbitrary,

⋂
i∈J Ei is normal. Moreover, if we take

J = IX and J ′ = I ′, then

O(t) =
⋂
ν∈I′
Oν

and O(t) is non-singular. It follows then that
⋂
i∈IX Ei is non-singular at x. Since x is an

arbitrary point of
(⋂

i∈IX Ei
)
\
(⋃

i/∈IX Ei
)
, it folows that this set is non-singular.

Call the components of the set
(⋂

i∈J Ei
)
\
(⋃

i/∈J Ei
)
strata. Obviously X is the disjoint union

of these sets and their closures are just tje components of the sets
⋂
i∈J Ei and we have checked

that these do correspond formally to the closure orbits. It remains to check the axiom of the
frontier: if Y,Z are strata, x ∈ Y ∩ Z, then Y ⊆ Z. But it suffices to prove that

I(Y )ÔX,x ⊇ I
(
Z
)
ÔX,x. (2.1)

In our local model, Y corresponds to O(t) and Z to Oτ , some face τ of σ. Since O(t) ⊆ Oτ , it
follows that

I(O(t))ÔXσ,t ⊇ I
(
Oτ
)
ÔXσ,t

which proves (2.1)
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Remark 2.1.3. If we do not assume that U ⊆ X is without self-intersection, it is still possible to
define a stratification such that for x ∈ X, the stratum containing x is formally isomorphic to the
orbit of t as follows:

If x is ri−fold of Ei, i ∈ Ix, 1 ≤ ri < ∞ then the stratum containing x is the connected

component through x of the subset of

⋂
j∈J

Ej

 \(⋃
i/∈J

Ei

)
where the multiplicity along each Ei

is equal to ri.
�

Definition 2.1.4. Let Y be a stratum.

MY = Group of Cartier divisors on Star(Y ), supported on Star(Y ) \ U
MY

R = MY ⊗ R
NY = Hom

(
MY ,Z

)
NY

R = NY ⊗ R = Hom
(
MY

R ,R
)

MY
+ = sub-semigroup of MY of effective divisors

σY =
{
x ∈ NY

R
∣∣ 〈D,x〉 ≥ 0 ∀D ∈MY

+

}
⊆ NY

R .

�

If Star(Y ) \ U =
⋃
i∈J Ei, then MY is a subgroup of the free abelian group of Weil divisors∑

i∈J niEi on Star(Y ). Thus MY and hence NY are finitely generated free abelian groups, and
MY

R , N
Y
R are dual finite-dimensional real vector spaces. Moreover MY

+ is clearly the intersection
of MY with the convex rational polyhedral cone in MY

R and σY is the dual cone in NY
R . We can

relate the M,N and σ′s to our models via:

Lemma 2.1.5. Let x be a closed point of Y and (T,Xσ, t) a local model at x. Let Ei correspond
to the codimension 1 orbit Oi ⊆ Xσ, and hence to the face R+ · vi ⊆ σ. Then the following are
equivalent:

1.
∑
niEi is a Cartier divisor on Star(Y )

2.
∑
niEi has a local equation at x

3.
∑
niOi has a local equation at t

4.
∑
niOi is a Cartier divisor on Xσ

5.
∑
niOi = (Xr) for some r ∈M(T ).

Proof. The equivalence (ii) ⇐⇒ (iii) follows because an ideal I in a Noetherian local ring O is
principal if and only if I · Ô is principal.

Now (v) =⇒ (iv) =⇒ (iii) and (i) =⇒ (ii) are obvious. Next start with any Weil divisor
D =

∑
niOi. Then {y ∈ Xσ | D has a local equation at y} is an open T -invariant set V . If t ∈ V ,

it follows that V contains all orbits O such that t ∈ O, i.e., V = Xσ. Thus (iii) =⇒ (iv).
(iv) =⇒ (v) [See Theorem 1.4.3]. Finally to see (ii) =⇒ (i), it suffices to show, for all closed
points x′ ∈ Y ,∑

niEi has a local equation at x′ ⇐⇒
∑

niEi has a local equation at ηY

where ηY is the generic point of Y . Again ( =⇒ ) is obvious. To prove (⇐=), we may as well
rename x′ = x, and use the local model (T,Xσ, t). Let η0 a generic point of O(t) ⊆ Xσ. Then
localizing ÔX,x

≈−→ ÔXσ,t, with respect to the prime ideals of Y , O(t) resp., one checks that
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∑
niEi has a local equation at ηY if and only if

∑
niOi has a local equation at η0. By the same

argument as above,
∑
niOi has a local equation at η0 implies

∑
niOi is a Cartier divisor on Xσ,

hence
∑
niEi has a local equation at x.

Corollary 2.1.6. There are canonical isomorphisms:

1. MY ∼= M(T )/{r | r ≡ 0 on σ}

2. NY
R
∼= Vect.spanN(T )R(σ)

3. σY ∼= σ.

Proof. Define the map

M(T ) −→ MY

x 7−→
∑

niEi if (Xr) =
∑

niOi.

By Lemma 2.1.5 it is surjective and the kernel is just
{
r
∣∣ (Xr) = 0 or Xr ∈ Γ

(
O∗Xσ

)}
= {r | r ≡ 0 on σ}.

This implies (i) and (ii). From the obvious fact that
∑
niEi is effective if and only if

∑
niOi is

effective, it follows that in this map, MY
+ is the image of σ̌ ∩M(T ), hence in the map of (ii), σY

corresponds to σ.

Corollary 2.1.7.

1. If Z is a stratum in Star(Y ), then there exists a positive Cartier divisor D on Star(Y ) such
that Star(Z) = Star(Y ) \ Supp(D).

2. If D is a positive Cartier divisor on Star(Y ), then Star(Y ) − Supp D = Star(Z) for some
stratum Z ⊆ Star(Y )

Proof.

1. Let Z correspond formally to Oτ via the isomorphism

ÔX,x
≈−→ ÔXσ,t.

There exists r ∈M(T ) such that r ≥ 0 on σ, and τ = {σ ∩ x | r(x) = 0}. Then (Xσ)Xr
∼= Xτ ,

i.e., it is the open subset consisting of orbits Oτ ′ for all faces τ ′ of τ . Let (Xr) =
∑
niOi

and let D =
∑
niEi be the corresponding divisor in Star(Y ). Star(Y ) \ Supp(D) is a union

of various strata Z ′, and if Z ′ corresponds formally to Oτ ′ , then

Z ′ ⊆ Star(Y ) \ Supp D ⇐⇒ Z ′ * Supp D

⇐⇒ Oτ ′ * Supp (Xr)

⇐⇒ Oτ ′ ⊇ Oτ

⇐⇒ Z ′ ⊇ Z
⇐⇒ Z ′ ⊆ Star(Z).

2. If D =
∑
niEi, let

∑
niOi = (Xr). Since ni ≥ 0, Xr ∈ Γ(OXσ ) and r ≥ 0 on σ. Let

τ = σ ∩ {x | r(x) = 0},

and let Oτ correspond formally to Z for some stratum Z ⊆ Star(Y ). Then the same argument
as in the previous item, shows that Star(Y ) \ Supp D = Star(Z).
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Now we saw in Proposition 2.1.2 that there is a bijection between the strata in Star(Y ) and
orbits in Xσ. This now induces further bijections:

{Strata in Star(Y )} ∼= {Orbits in Xσ}

∼= {Faces of σ}

∼=
{
Faces of σY

}
We can identify this bijection intrinsically on X without use of local models as follows:

1. If Zi = Ei \
(⋃

j 6=iEj

)
is a codimension 1 stratum in Star(Y ), and Ei corresponds formally

to Oi ⊆ Xσ, then Oi corresponds to the ray R · vi ⊆ N(T ) where

vi : M(T ) −→ Z
r 7−→

(
order of vanishing of Xr on Oi

)
.

Therefore the above bijection takes Zi to the linear function:

ei :

(∑
i∈J

niEi

)
7−→ ni.

Note that by definition

MY
+ =

{
x ∈MY

∣∣ ei(x) ≥ 0 ∀i
}
,

hence σY is the span of the vectors ei’s.

2. If Z ⊆ Star(Y ) is any stratum, then

Z =

[⋂
i∈K

Ei −
⋃
i/∈K

Ei

]
∩ Star(Y )

where K = {i | Z ⊆ Ei}. Then if Z corresponds to τ , for all i,

Z ⊆ Ei ⇐⇒ τ ⊇ R+ · ei.

Therefore τ is the face of σ spanned by {ei}i∈K .

Definition 2.1.8.

R.SU (X)
·
= {λ : Spec k[[t]] 7−→ X | λ is a k-morphism and λ(η) ∈ U for η the generic point}

�

R.S. is short for “Riemann Surface” as used, more or less, by Zariski (in, for example, [ZS60]
page 110). Notice that we have a pairing:

〈·, ·〉 : R.SU (Star(Y ))×MY −→ Z
(λ,D) 7−→ 〈λ,D〉 ·= Ord0

(
λ−1D

)
,

where OrdO is the order of vanishing at the closed point 0 of a divisor. This pairing dualizes
to a map:

Ord : R.SU (Star(Y )) −→ NY
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and since 〈λ,D〉 ≥ 0 if D is effective, Ord factors through σY :

Ord : R.SU (Star(Y )) −→ σY ∩NY

This is the non-linear analog of the interpretation of N(T ) as the 1-P.S.’s of T and of σ∩N(T )
as the 1-P.S.’s which extend to morphisms λ : A1

k −→ Xσ. We will see below that, in fact, σY ∩NY

correspond to the image of Ord. For the moment, notice that:(
Int σY

)
∩NY ⊆ Image(Ord) (2.2)

In fact, taking a closed point x ∈ Y and a local model (T,Xσ, t), we may assume that t is the
distinguished point in its orbit in the sense of 1.3.2, i.e., for each a ∈ (Int(σ)) ∩N(T ), λa(0) = t.
Hence λa induces λ̂a:

Spec k[t] = A1
k Xσ

Spec k[[t]] Spec
(
ÔXσ,t

)

Spec ÔX,x

StarY

λa

λ̂a

p

∼ =

hence p · λ̂a ∈ R.S.U (Star(Y )) and it is immediate that in the isomorphism of Corollary of
Lemma 2.1.5, a = Ord

(
p · λ̂a

)
.

“Ord” also gives us a direct relation between the strata in Star(Y ) and the faces of σY :

Lemma 2.1.9. Let λ ∈ R.S.U (Star(Y )). If Z ⊆ Star(Y ) is a stratum and r is the corresponding
face of σY as in Proposition 2.1.2, then:

λ(0) ⇐⇒ Ord λ ∈ Int τ

Proof. Suppose K = {i | Z ⊆ Ei}, so that τ = cone({ei}i∈K). Then Ord λ ∈ Int τ is equivalent
to:

∀D ∈MY such that D ≥ 0 on σY : 〈D,Ord λ〉 = 0⇐⇒ D ≡ 0 on τ

Such a D comes from a positive Cartier divisor D =
∑
niEi on Star(Y ) and:

1. 〈D,Ord λ〉 = 0 ⇐⇒ λ(o) /∈ Supp D

2.. D ≡ 0 on τ ⇐⇒ 〈D, ei〉 = 0 ∀i ∈ K
⇐⇒ ni = 0 ∀i ∈ K
⇐⇒ Supp D ∩ Z = ∅

Thus Ord λ ∈ Int τ is equivalent to:

∀ positive Cartier divisor D on Star(Y ) : λ(0) /∈ Supp D ⇐⇒ Z ∩ Supp D = ∅.

By the second Corollary to 2.1.5, this means λ(0) ∈ Z.

The final step is to glue together all the polyhedral cones σY into one big conical polyhedral
complex. We must first compare σY and σZ when Z is a stratum in Star(Y ): There are canonical
maps αY,Z and βY,Z (which we abbreviate to α and β):
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1. MY α−→MZ , the restriction of divisors from StarY to StarZ. Hence,

2.

MY
R

α−→MZ
R

NY β←− NZ

NY
R

β←− NZ
R

and β is the dual of α.

3. MY
+

α−→MZ
+ (since restriction of positive divisor is positive). Thus,

4. σY β←− σZ .

where β is the dual of α.

Lemma 2.1.10. MY −→MZ is surjective.

Proof. Let {Ei}i∈T be the components of (Star(Y )) \ U . Let {Ei}i∈K be those Ei ⊆ Star(Y ) \
Star(Z). If D is a Cartier divisor on StarZ \ U , we can write

D =
∑
i∈J\K

niEi

and extend it by the same formula to a Weil divisor on Star(Y ). We seek

D′ = D +
∑
i∈K

miEi

which is a Cartier divisor on Star(Y ). If x ∈ Y , it suffices by Lemma 2.1.5 that D′ have a local
equation at x. Let (Xσ, t) be a local model at x and let

D∗ =
∑
i∈J\K

niOi

be the corresponding Weil divisor. If Z corresponds to the face τ of σ, then by the argument
used in Lemma 2.1.5,

D Cartier divisor in Star(Z) =⇒ D∗ Cartier divisor in Xτ .

But then again by Lemma 2.1.5, D∗|Xτ = (Xr)|Xτ for some r ∈ M(T ). Then let D∗
′

= (Xr):
this is a Cartier divisor on Xσ extending D∗|Xτ . Then D′ can be taken as the corresponding
divisor on X.

Corollary 2.1.11. NZ
R −→ NY

R is injective and considering this as an inclusion: NZ = NZ
R ∩NY .

Corollary 2.1.12. If Z corresponds to the face τ of σY , then the inclusion NZ
R −→ NY

R maps σZ
isomorphically onto τ .

Proof. Using the notation of the lemma, let ei ∈ NY be the map
∑
njEj 7→ ni, i ∈ J . Then

if i ∈ J \ K, ei(
∑
njEj) depends only on the restriction of

∑
njEj to Star(Z), hence these ei

are in NZ . Now we know that since Star(Z) − U =
⋃
i∈J\K Ei, σ

Z is spanned by {ei}i∈J\K . On
the other hand, MY

R , we know that τ is spanned by {ei}i∈J\K . Therefore σZ goes onto τ in the
inclusion MZ

R −→MY
R .

Corollary 2.1.13. The diagram

R.S.U (StarZ) σZ

R.S.U (StarY ) σY

⊆

Ord

β

Ord

28



commutes, hence

Ord : R.S.U (Star(Y )) −→ σY ∩NY

is surjective.

Proof. The commutativity is immediate from the definitions and then surjectivity of Ord follows
from the fact that for all Z, Im

(
Ord(Z)

)
⊇
(
Int σZ

)
∩NZ , hence by the first Corollary to Lemma

2.1.5

Im
(

Ord(Y )
)
⊇ (Interior of face τ corresponding to Z) ∩NY .

Next two general definitions on the kind of objects we are seeking to define

Definition 2.1.14. A conical (compact resp.) plyhedral complex ∆ is a topological space |∆| plus
a finite family of closed subsets σα ⊆ |∆| called its cells plus a finite-dimensional real vector space
Vα of real-valued continuous functions on σα such that

(Conical case) via a basis f1, . . . , fnα of Vα, we get a homeomorphism

φα : σα
≈−→ σ′α ⊆ Rnα

where σ′α is a canonical convex polyhedra in Rnα , not contained in a hyperplane,

(Compact case) 1. Vα ⊇ R, the constant functions, and via a basis 1, f1, . . . , fnα of Vα, we get a homeo-
morphism:

φα : σα
≈−→ σ′α ⊆ Rnα

where σ′α is a canonical convex polyhedra in Rnα , not contained in a hyperplane,
2. φ−1

α (faces of σ′α) = other σ′βs, which we call the faces of σα; we call φ−1
α (Int σ′α) the

interior of σα

3. |∆| =
4. If σβ = a face of σα, then resσβVα = Vβ

�

We can ”explain´´ the idea of Vα as follows: we want σα to be a conical or compact polyhedron in
an actual real vector space, but unique only up to linear transformations, or affine transformations
in the 2 cases.

Definition 2.1.15. An integral structure on a conical (compact resp.) polyhedral complex is a
set of finitely generated abelian groups Lα ⊆ Vα such that:

0. (Compact case only) Lα ⊇ nZ, the constant function with values in nZ, for some n,

1. Lα ⊗ R ≈−→ Vα,

2. If σβ is a face of σα, then resσβLα = Lβ .

�

Remark 2.1.16. If ∆ is a compact polyhedral complex, we can ”expand´´ ∆ to a conical poly-
hedral complex ∆′ canonically:

|∆′| = |∆| × [0,∞)
/
∼

where ∼ identifies |∆| × {0} to one point. Afterwards, setting

|σ′α| = |σα| × [0,∞)
/
∼

V ′α = {functions on σ′α of form (x, t) 7→ t · f(x), f ∈ Vα}.
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where ∼ identifies σα × {0} to one point.

Given a conical polyhedral complex ∆, if f is a continuous function on |∆| such that

• resσα f ∈ Vα, for all α,

• f(x) ≥ 0 for all x with equality only if x = apex

then we get a compact polyhedral complex ∆0:

|∆0| = {x ∈ |∆| | f(x) = 1}
(σα)0 = σα ∩ |∆0|
(Vα)0 = res(σα)0

Vα.

�

Our final point is simply:

To every toroidal variety without self-intersection U ⊆ X, we can associate a conical polyheral
complex with integral structure ∆ =

(
|∆|, σY ,MY

)
whose cells are in 1 − 1 correspondence with

the strata of X.

This is now quite simple to define. We set

|∆| ·=
∐

Strata Y σ
Y /
∼

where the relation ∼ is generated by isomorphisms

βY,Z : σZ
≈−→ face of σY

whenever Z ⊆ StarY .
Explicitly, the equivalence relation is:

x1 ∈ σY1 ∼ x2 ∈ σY2 ⇐⇒



the faces τi of σYi containing xi

correspond to the same stratum

Z ⊆ StarY1 ∩ StarY2 and x1, x2

correspond to the same point of σZ


so that |∆| =

{
disjoint union of Int σY

}
and the identification is carried out like this: for every

Y1, Y2, Star(Y1) ∩ Star(Y2) is an open set in Star(Y1) and a union of strata; hence it is the set of
strata corresponding to the set of faces of a closed subpolyhedron σY1,Y2 ⊆ σY1 . Define

σY1,Y2 σY2,Y1

σY1 σY2

⊆ ≈
hY1,Y2

⊆

by requiring that for all Z ⊆ Star(Y1) ∩ Star(Y2), hY1,Y2 equals βY2,Z ◦
(
βY1,Z

)−1:

σZ

(Face corresponding to Z) (Face corresponding to Z)

σY1 σY2

βY1,Z

≈
βY2,Z

≈

⊆ ⊆

on the face corresponding to Z. For this to be possible, there is a compatibility condition to
check whenever W ⊆ StarZ, Z ⊆ StarY , i.e., that the diagram
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σZ

σW σY

βY,ZβZ,W

βY,W

is commutative. This is immediate.

Remark 2.1.17. It also follows immediately that all the “Ord” maps patch together to one big
“Ord” map:

R.S.U (StarY ) σY

R.S.U (X) |∆|.

Ord

⊆

Ord

�

2.2 Theorems on Toroidal Varieties
We should like to study to what extent a toroidal variety is determined by ∆. More precisely, one
cannot, of course, expect that ∆ determines U ⊂ X; rather if you fix one toroidal variety U ⊂ X,
it turns out that polyhedral subdivisions of the associated ∆ determine canonically new toroidal
variety U ⊂ Z dominating U ⊂ X:

Z

U

X

birational morphism

we work up to this in a sequence of theorems that we number analogously to those in chapter
I. For the whole of this section, fix a particular toroidal variety U ⊂ X without self-intersection.
The following idea is due to Hironaka:

Definition 2.2.1. A birrational morphism f :

Z

U

X

f

�

is called canonical if for all x1, x2 ∈ X in the same stratum Y and all

α : ÔX,x1

≈−→ ÔX,x2

which preserve the strata, i.e., if Y ⊂ Ȳ ∗ for some stratum Ȳ ∗, then α takes the ideal of Ȳ ∗ at x1

to the ideal of Ȳ ∗ at x2, α lifts:

Z ×X Spec ÔX,x1
Z ×X Spec ÔX,x1

Spec ÔX,x1 Spec ÔX,x1

≈

Specα
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Now fix a stratum Y ⊂ X and consider diagrams:

Z

U

StarY

f affine and canonical

Z normal

f

(∗)

Theorem 2.2.2. There is a 1-1 correspondence between the set of diagrams (∗) and the set of ra-
tional polyhedral cones τ ⊂ σY given by τ 7→ Zτ = Uτ where Uτ = subsheaf

∑
D∈τ∨∩MY

OStar Y (−D)

of R(X). For all such diagrams, U ⊆ Z is another toroidal variety without self-intersection, and
with a unique closed stratum Ỹ . moreover, ∃ unique linear isomorphism γ making the following
commute:

R.S.U(Z) σỸ
ord

τ

≈γ

⊂

R.S.U(StarY ) σY
ord ⊃

and if λ ∈ R.S.U (Star Y ), then

λ ∈ R.S.U (Z)⇐⇒ Ord λ ∈ τ

Proof. To make Zτ more explicit, note that we can construct it as follows: Let D1, ..., DN be a
basis of the semi-group τ∨ ∩MY . Then if V ⊂ Star Y is any open set where each Di has a local
equation δi, then

Uτ |V = OV [δ1, ..., δN ]

In particular, Uτ is quasi-coherent and Zτ is well-defined. It is evident that f : Zτ → Star Y is
affine and canonical.

In particular, Uτ is a quasi-coherent and Zτ is well-defined. It is evident that f : Zτ → Star Y
is affine and canonical. On the other hand, abbreviating σY by σ, we can use the theory of chapter
1, to construct affine toric varieties containing the n-dimensional torus T :

Xτ

T

Xg

g

for any closed point x ∈ Star Y , one can choose a suitable orbit in Xσ, a closed point t in this
orbit and a local model ÔX,x ' ÔXσ,t. In this isomorphism, δi corresponds to uiχri for some unit
ui, and ri ∈ M(T ). Then r1, ..., rN generate the corresponding semi-group τ∨ ∩M(T ) in M(T ),
and Xτ = SpecOXσ [χr1 , ..., χrN ]. Therefore our formal isomorphism lifts to φ:

Zτ ×X Spec ÔX,x XττXσ Spec ÔXg,t

Zτ Xτ

X Spec ÔX,x Spec ÔXg,t Xg

≈
φ

p q

f g

≈
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Passing to completions at a point x′ ∈ Zτ , this gives us simultaneously local models at all points
of Zτ over x, hence proves that Zτ is normal and that U ⊂ Zτ is a toroidal variety. Moreover since
in the morphism Xτ → Xσ, each orbit of Xτ is smooth over some orbit of Xg, it follows that every
stratum of Zτ is smooth over some stratum of StarY .

We may make a simplifying reduction to the case τ ∩ Intσ 6= φ at this point. Because if σ′ is
the smallest face of σ containing τ and σ′ corresponds to the stratum Y ′ ⊂ X, then it follows from
the existence of φ and the fact that Im(Xτ → Xσ) ⊂ Star Oσ′ . To go further we need:

Lemma 2.2.3. For all orbits O ⊂ Xτ , q−1(Ō) is irreducible and normal.

Proof. Note that q is a flat morphism with regular fibres, hence Ō normal =⇒ q−1(Ō). If OO =
image of O in Xσ, note that

a) Ō0 is normal

b) Since the stabilizer of a point of O0 is connected, O ' O0 × T for some torus T ′, hence
R(OO) is algebraically closed in R(O0)

Irreducibility now follows from:

Lemma 2.2.4. Let f : X → Y be a morphism of varieties, Y1 = ¯f(X) and let y ∈ Y1. If

a) Y1 is normal at Y

b) R(Y1) is algebraically closed in R(X), then:

X ×Y Spec Ôy,Y
is irreducible.

Proof. Since X ×Y Spec Ôy,Y is flat over X, all its generic points lie over the generic point of x.
Thus it is enough to show that R(X)⊗Oy,Y Ôy,Y is an integral domain. But

R(X)⊗Oy,Y Ôy,Y ' R(X)⊗R(Y1) [R(Y1)⊗Oy,Y1 Ôy,Y1
]

by (a), Ôy,Y is a domain and R(Y1)⊗Oy,Y1 Ôy,Y1
is part of its quotient field, which is separable

over R(Y1). Therefore by (b), the whole thing is still a domain.

Now assume that we have chosen a point x ∈ Y , so that the corresponding point t is in the
closed orbit of Xσ. In this case:

a) ∀ strata W ⊂ Zτ , ηW ∈ Image p

b) ∀ orbits O ⊂ Xτ , ηO ∈ Image q

because the image of ηW in X (resp. of ηO in Xσ) equals the generic point of some stratum (resp.
some orbits) which lies in Spec Ox,X (resp. Spec Ot,Xσ ). Let

E1, ..., EN = comp. of Zτ − U

Ō1, ..., ŌM = comp. of Xτ − T

It follows from lemma 2.1.5 that the sets:

1. of schemes q−1(Ōi)

2. of components of shemes q−1(Ōi)

3. of components of Xτ ×Xσ Ôt − q−1(T )

4. of components of Zτ ×X ÔX − p−1(U)

5. of components of schemes p−1(Ei)

are all equal or in 1-1 correspondence. We would like to show that the scheme p−1(Ei) are
irreducible so that we can add to our list the set:

6. of schemes p−1(Ei)
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Suppose to the contrary p−1(Ei0) has ≥ 2 components which correspond say to q−1(Ōi1) and
q−1(Ōi2). we can find a character chir of T with r ≥ 0 on τ such that

a) χr ≡ 0 on Ōi1
b) χr unit generically on Ōi2

But (χr) correspond formally to the Cartier divisor D on Zτ supported on Zτ − U and r ≥ 0 on
τ implies D effective and a) and b)imply:

a’) D ≡ 0 on the branch of Ei0 corresponding to Ōi1
b’) D 6≡ 0 on the branch of Ei0 corresponding to Ōi2
But Ei0 is irreducible so D has a definite multiplicity along Ei0 which is either positive or zero,

i.e., a’ and b’ are incompatible. Thus p−1(Ei0) is irreducible. This shows incidentally that for each
i, φ(p−1(Ei)) = q−1(Ōj) for some j, hence the Ei are normal. Therefore U ⊂ Zτ is a toroidal
variety without self-intersection. But more than that, we can show that Zτ has a unique closed
stratum. In fact, let O∗ be the closed orbit in Xτ and let t∗ ∈ O∗ be a closed point lying over
t ∈ Xσ. This gives us (t∗, t) ∈ Xτ ×Xσ Spec Ōt,Xσ and X∗ = p(φ−1(t∗, t)) ∈ Zτ . Then I claim:

∀ strata W ⊂ Zτ , x∗ ∈ W̄ hence the stratum Ỹ containing x∗ is the only closed stratum.

In fact, suppose W̄ is a component of
⋂
i∈J

Ei. Then p−1(W̄ ), even if it does not remain irre-

ducible, still contains a component of
⋂
i∈J

p−1(Ei). Hence for some J ′

φ(p−1(W̄ )) ⊇ a component of
⋂
i∈J′

q−1(Ōi) = q−1(
⋂
i∈J′

(Ōi)). But
⋂
i∈J′
Ōi is in fact, the closure

of an orbit Ō (i.e., let τ ′= least face of τ containing the vertices in J ′: then let O correspond to
τ ’). And we have seen that q−1(Ō) is irreducible. Therefore

φ(p−1(W̄ )) ⊃ q−1(Ō)

Since O∗ ⊂ Ō, t∗ ∈ qŌ. therefore x∗ ∈ W̄ .
This proves that Zτ = Star Ỹ . Finally, to compare τ and σỸ , pass to the completion of

Zτ ×Xσ Ôt,Xσ at (t∗, t) to get local models for X and Zτ simultaneously:

ÔZτ ,x∗ ∼= ÔXτ ,x∗

ÔX,x ∼= ÔXσ,t

As above let Ei and Ōi be corresponding components of Zτ −U and Xτ −T .Then as in Section
1 (verificar referencia):

∑
niEi is a Cartier dividor in Zτ =⇒

∑
niŌi is a Cartier divisor in Xτ ,

=⇒
∑

niŌi = χrsome r ∈M(T ) ,

=⇒
∑

niŌi = g∗D,D a Cartier divisor on Xσ

=⇒
∑

niEi agrees formally at x∗with f∗D,Da Cartier divisor on X

=⇒
∑

niEi = f∗D,D a Cartier divisor on X

In other words, D 7→ f∗D sets up
MY 'M Ỹ (2.3)

hence
NY

R ' N Ỹ
R (2.4)

But also: ∑
niEi effective ⇐⇒

∑
niσi effective

⇐⇒ the corresp. linear function Q∑
niŌi

is ≥ 0 on τ
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hence in the identification (2.4)

M Ỹ
+ ' τ∨ ∩M Ỹ

and in (2.4)
σỸ ' τ

It is immediate that isomorphism is compatible with ord since for all λ : Spec k[[t]] → Zτ and
D ∈MY ,

〈f ◦ λ,D〉 ' 〈λ, f∗D〉

And if λ : Spec k[[t]]→ X is given, then clearly λ lifts to Zτ is and only if

λ∗(δi) ∈ k[[t]], (δi local eqn of Di, D
′
is generators of τ∨ ∩MY )

ie.,
〈Ordλ,Di〉 ≥ 0, 1 ≤ i ≤ N,

and this is equivalent to Ordλ ∈ ˇ̌τ = τ .
It remains to prove that all affine canonical modifications of Star Y are obtained in this way.

Let

Z

U

StarY

f

be a canonical affine modification. For all D ∈MY
+ , define a sheaf of ideals:

QD = {a ∈ OX :
a

δ
∈ f∗OZ , δ = local equation of D}

Then because f∗ OZ |U = OStar Y |U and f∗OZ is quasi-cohenrent, it follows easily that

f∗OZ =
⋃

D∈MY
+

QDOStar Y (D)

Moreover, because f is canonical, so is QD (i.e., QD in invariant under all formal isomorphism α
as in definition 2.1.1. In the way, we can easily reduce the proof that Z ∼= Zτ , some τ , to:

Lemma 2.2.5. Let F be a canonical coherent sheaf of fractional ideals on Star Y . Then ∃ d1, ..., Dn ∈
MY such that

F =

n∑
i=1

OStar Y (Di)

Proof. Let {z1, ..., zd} =Ass (F) and Zi = ¯{zi}. Let

x ∈ Y −
⋃

all i s.t. Zi 6⊃Y
Zi

be a closed point and φ : Ôx,X → Ôt,Xσ a local model. We prove the lemma in 4 steps.

Step I: ∃x1, ..., xn ∈M(T ) s.t φ(F Ôx,X) = (χr1 , ..., χrn)

Step II: ∃D1, ..., Dn ∈MY s.t Fx =
∑
OStar Y (Di)x

Step III: ∃D1, ..., Dn ∈MY and a neighborhood V of x such that:

F|V =
∑
OStar Y (Di)

Step IV: ∃D1, ..., Dn ∈MY such that F =
∑
OStar Y(Di)
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Step I: The fractional ideal Q = φ(F · Ôx,X) in Ôt,Xσ is by hypothesis invariant under all
automorphism of Ôt,Xσ that leave fixed the componentsof Xσ − T. Let O ⊂ Xσ be the orbit
through which we can assume closed. Then also forall associated primes ℘ of Q, ℘ ⊆ ℘′ = I(OÔt).If
T1=stabilixer of t, then we can write

T = T1 × T2

Xσ = X1 ×X2

O = {t1} × T2

t = (t1, 1)

Now embed
T2 ' (A1 − {0})k ⊂ Ak

Define

ψ : Xσ → Xσ
′

ψ(x1, t2) = (x1, t2 − 1)

taking the point t to the point t′ = (t, 0) ∈ X ′σ. via ψ on the Ot,Xσ and Ôt,Xσ as well.
Therefore by assumption Q is invariant under this action. By the usual argument this means that
Q is generated by characters for this action, i.e., by χr ◦ψ, r ∈M(T ). But now Q = Q(Ôt)℘ ∩ Ôt
and in (Ôt)℘, all the characters χr ◦ ψ, r ∈M(T2), became units. Bit χ ◦ ψ = χr is r ∈M(T1), so
Q is generated by characters χr.

Step I =⇒ Step II since if δ1 is a local equation of Ei, then φ(δ1) = u1 ◦ χr, ui unit and ri a
basis of σ∨ ∩M(T ).

Step II =⇒ Step III by coherency.
Step III =⇒ Step IV: In fact, for all closed points x′ ∈ Star Y, choose x′′ ∈ V in the same

stratum as x′. Then there exists ans isomorphism

ψ : Ôx′,X ' Ôx′′,X

preserving strata. Sinece F is canonical, we get

ψ(FÔx′,X) = FÔx′′,X
=

∑
Ôx′′,X(Di)

= ψ(
∑
Ôx′,X(Di))

and hence:
FX′ = Ox′,X ∩ FÔx′,X = Ox′,X ∩

∑
Ôx′,X(Di) =

∑
Ox′,X(Di)

Having proven Theorem 2.2.2, we can now make rapid progress: the analog of Theorem 1.3.4
has already been worked out in the first section in the very definition of σY and Ord. We get next:

Theorem 2.2.6. If τ1, τ2 ⊂ σY are rational polyhedral cones, then there exists a morphism g:

Zτ1

U Zτ2

X

g

f1

f2

if and only if τ1 ⊆ τ2. Moreover g is an open immersion if and only if τ1 is a face of τ2.

The proof is completely analogous to that of the orbit cone correspondence replacing orbits
by strata, 1-P.S. by elements of R.S.U (x), and descriptions of the affine rings of Xτ1 , Xτ2 by
descriptions of the sheaves f1,∗OZτ1 , f2,∗OZτ2
Theorem 2.2.7. Zτ is non-singular if and only if τ∨ ∩NY over Z
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The proof this time uses the known characterization of smooth cones and carries it over to Zτ
by using local models ÔX,Zτ ' Ôt,Xτ
Definition 2.2.8. If ∆ = {|δ|, σα, Vα} is a canonical polyhedral complex, then a finite partial
polyhedral decomposition is a second conical polyhedral complex ∆′ = {|∆′|, σ′β , V ′β} with

1. |∆′| ⊆ |∆|

2. ∀β,∃α such that Intσ′β ⊆ Int σα

3. If σ′β , then V
′
β = resσ′βVα

�

If {Lα} is an integral structure on ∆, then ∆′ is called rational if whenever σ′β ⊆ σα, then σ′β
is defined by inequalities l ≥ 0, l ∈ Lα. In this case, L′β = resσ′βLα is an integral structure on ∆′.
This is a polyhedral complex decomposition.

Definition 2.2.9. Consider diagrams:

Z

U

X

f birational

where:

1. Z has an open covering {Vi} such that U ⊂ Vi, f(Vi) ⊂ Star Yi for some stratum Yi and Vi
is affine and canonical over StarYi

2. Z normal

We call these allowable modification of X �

We can construct them from f.r.p.p. decomposition ∆′ of ∆ by reversing the procedure followed
at the end of section 2.1: set

Z∆′ ==

∐
β Zσ′β

/
∼

Explicitly, the equivalence relation is

x1 ∈ Zσ′β ∼ x2 ∈ Zσ′γ ⇐⇒



The strata containing x1 and x2

correspond to a common face τ of

σ′β and σ′γ and x1 and x2 come from

the same point of Zτ


so that Z∆′ = {disjoint union of the closed strata Yβ in each Zσ′β}. The identification can be

carried out like this: ∀β, γσ′β ∩ σ′γ is a closed subpolyhedron of σ′β ; hence it corresponds to a set of
strata forming an open subscheme Z(β,γ) ⊂ Zσ′β . Define

Z(β,γ) Z(γ,β)
≈

h(β,γ)

Zσ′β Zσ′γ

⊇ ⊆

by requiring that for all faces τ ⊂ σ′β ∩ σ′γ , h(β,γ) should be given on the image of Zτ by:

Zτ

Im[Zτ −→ Zσ′β ] Im[Zτ −→ Zσ′γ ]

≈ ≈

⊆ ⊆

Z(β,γ) Z(γ,β)
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The only compatibility condition here is that when τ1 ⊆ τ2 ⊆ τ3, then the middle triangle here:

U

Zτ2

Zτ1 Zτ3

X

should commute. This is clear. It is immediate from the affine correspondence of toric varieties
and this construction that (1) Z∆′ fits into a diagram

Z∆′

U

X

f

that (2) U ↪→ Z∆′ is a toroidal variety without self-intersection, that (3) ∆′ is the polyhedral
complex associated to U ↪→ Z∆′ ,that (4)the diagram:

R.S.U(Z∆′) |∆′|ord

⊆

R.S.U(X) |∆|ord

↪−→

commutes and that (5) if λ ∈ R.S.U (X), then λ ∈ R.S.U (Z∆′), if and only if Ord λ ∈ |∆′|. By
the valuative criterion for separation, Z∆′ , is separated (i.e., each Zσ′β is affine over the separated
scheme X, hence is separated; and if λSpec k((t))→ U has extensions to 2 of these open pieces:

µ : Spec k[[t]]→ Zσ′β
ν : Spec k[[t]]→ Zσ′γ

then in |∆|, ord µ = ord ν, so µ(o), ν(o) both lie in some Zτ ′ , τ = common face of σ′β , σ
′
γ and µ, ν

both factor through Zτ .) This proves:

Theorem 2.2.10. The correspondence ∆′ 7→ Z∆′ , defines a bijection between the f.r.p.p. decom-
position of ∆ and the isomorphism classes of allowable modifications of X.

We also find:

Theorem 2.2.11. Let ∆′,∆′′ be 2 f.r.p.p decomposition of ∆. Then there exists a morphism g:

U

Z∆′ Z∆′′

Z

g

if and only if for all polyhedra σ′β of ∆′, σ′β ⊆ σ′′γ for some polyhedron σ′′γ of ∆′′

Theorem 2.2.12. The morphism g is proper if and only if |∆′| = |∆′′|

(proof immediate by valuative criterion for properness.)
Next we can generalize Theorem 1.5.1 along the lines already indicated in lemma 2.1.10. We

consider canonical coherent shaves F of fractional ideals on X, i.e. ∀α : Ôx1,X → Ôx2,X , preserving
strata, α(F̂x1

) = F̂x2
By lemma 2.1.10, it follows that for any stratum Y ,
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F|Star Y '
n∑
i=1

OStar Y (−Di), some D1, ..., Dn ∈MY .

This allows us to define a map

ord F : |∆| → R

in the following way:

∀x ∈ σY , ord F(x) = min
1≤i≤n

< Di, x >

Note that:

OrdF(ord λ) = min
1≤i≤n

〈Di,Ordλ〉

= min
1≤i≤n

ord 0λ
−1(Di)

= ord0λ
−1(F)

and hence the definition is independent of the choice of Di. Clearly OrdF is a function f : |δ| → R
such that:

(i) f(λ · x) = λ · f(x), λ ∈ R+

(ii) f is continuous, piecewise-linear,

(iii) f(σY ∩NY ) ⊂ Z all Y

(iv) f is convex on each σY

A function satisfying this conditions will be called an order function.

Conversely let f : |∆| → R be an order function. for all Y , put

(Ff )Y =
∑

D∈MY ,D≥fon σY
Ostar Y (−D)

Theorem 2.2.13. I. Let f : |∆| → R be an order function. Then the (Ff )Y can be patched
together into a canonical coherent complete sheaf Ff of fractional ideals on X.

II. a) ord Ff = f

b) Ford f is the completion of f

c) The maps F 7→ ord F and f 7→ Ff define bijection between the set of canonical coherent
complete sheaves of fractional ideals and the set of order functions f .

d) F ⊂ Ff if and only if ord F ≥ f
e) ord F1 · F2 = ord F1+ ord F2

f) F|Star Y ' OStar Y if and only if ord F ≡ 0 on σY

III. a) F−1 = Fg where g is the convexinterpolation of ord F on
⋂
Y Sk

1(σY )

b) (F−1)−1 = Fif and only if F is complete and ord F is the convex interpolation offunction
of a function

⋂
Y Sk

1(σY )→ Z. Moreover there exists a bijective correspondence between
the set of canonical Weil-divisors (i.e., those supported on X −U) and the set of intgral
functions on

⋂
Y Sk

1(σY ).

c) The following are equivalent:

i) F invertible
ii) F · F−1 = OX
iii) ord F is linear on each σY

The proof is similar to that of Theorem 1.5.1.
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Theorem 2.2.14. Let F be a canonical coherent sheaf of fractional ideals. Let BF(X) be the
normalization of the variety obtained by blowing up F. Then BF(X) is an allowable modification
of X and is described by the f.r.p.p. decomposition of ∆ obtained by subdividing the δY ’s into the
biggest possible polyhedra on which ord F is linear.

Proof. First,f : BF(X)→ X is an allowable modification: In fact, if

F|Star Y '
n∑
i=1

OStar Y (−Di)

the f−1(Star Y ) is covered by the n relatively affine open places which are the normalizations of:

Vi = Spec Qi,Qi = {OStar Y − algebra generated by O(Di −Dj), 1 ≤ j ≤ n}

[Sinceif, locally in Spec R ⊂ Star Y , δi is an equation of Di, then F is given by the fractional ideal∑
δiR, hece the blow-up is covered by affines with rings

Si = R[δ1/δi, ..., δn/δi]

and Si is the OStar Y -algebra generated by O(Di−D1), ...,ODi−Dn .] As BF(X)is also charactezed
as the minimal normal variety dominating X such that the pull-back of F is invertible, 1.6.1 follows
from Theorem 1.5.1.

Finally the proof of Theorem 1.5.1 goes over immediately to prove:

Theorem 2.2.15. For any toroidal variety U ⊂ X without self-intersection,there exists a canonical
sheaf ofideal Q ⊂ OX such that BQ(X) is non-singular.

There is another situation that we must analyze for the sake of its application to semi-stable
reduction. This does not involve any new ideas but rather a slight reformulation of what has been
studied so far in a new situation. Suppose that in addition to U ⊂ X, a toroidal variety without
self-intersection, we are given a positive Cartier-divisor D with support exactly X − U . We can
associate to the triple (X,U,D) a compact plyhedral complex ∆0 with integral structure, where

|∆|0 = {x ∈ |∆| :< D,x >= 1}
σY0 = |δ0| ∩ σY

resσY0 (MY )giving integral structure.

Note that a polyhedral subdivision of ∆0 gives a conical polyhedral subdivision of ∆ and vice
versa. When one has a compact polyhedral complex with integral structure (∆0, σα, Lα), note that
one can define several more structure on ∆0:

a) An increasing series of "lattices" on ∆0: ν ≥ 1

(∆0) 1
ν Z

= {x ∈ |∆0| : ifx ∈ σα, then∀f ∈ Lα, f(x) ∈ 1

ν
Z}

Every rational point of ∆0 lies on one of these lattices but each (∆0) 1
ν Z

b) a volume element on each polyhedron σα or even on each rational polyhedron τ ⊂ σα(possibly
of lower dimension than σα): let L = resτLα and if k = dimτ , let 1/a, f1, ..., fk be abasis of L.
Use f1, ..., fk to define F : τ → Rk and pull-backthe volume elemnt. Since this embedding is
unique up to translation and unimodular transformation, the volume element is well-defined.

Theorem 2.2.16. Given U ⊂ X and D as above, let ∆′ be an f.r.p.p. decomposition of ∆ and
let ∆′0 be the associated decomposition of ∆0. Let f : Z∆′ → X be the corresponding modification.
Then

a) the vertices of ∆′0 are in (∆0)Z if and only if f−1(D) vanishes to order one on each component
of Z∆′ − U

b) If a9 holds, then moreover the volumen of every polyhedron τ0 in ∆′0 is 1/(dimdim τ0); if
and only if Z∆′ is non-singular.
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Proof. To probe a), note that the components Ei of Z∆′ − U correspond to the one-dimensioal
faces R+ · vi of ∆′ and hence to the vertices of ∆′0. If we normalize vi so that Vi isa primitive

vector in NY , then 〈D, vi〉Z. Let 〈D, vi〉 = ν. Then
1

ν
vi is the corresponding vertex of ∆′0 and

1

ν
vi ∈ (∆0)Z if and only if ν = 1

On the other hand

ν = least integer nsuch that 〈D, v〉 = n, some v ∈ NY ∩ (R+ · vi)

= least nsuch that 〈D, ord λ〉 = n, some λ ∈ R.S.u(X) with λ(0) ∈ Ei −
⋂
j 6=1

Ej

= multiplicity to which f−1(D)vanishes along Ei

This prove a). As for b) note that if τ is a k-dimensional compact polyhedron with integral vertices,
then

vol(τ) =
a

k!
; a ∈ Z, a ≥ 1

and the certainly a > 1 unless τ is a simplex. Thus for either of the 2 conditions in b) to hold, all
τ0 must be simplices. We are now reduced to:

Lemma 2.2.17. Let NR be a real vector space, N ⊂ NR a lattice, N∗ = Hom(N,Z).Let x0, ..., xk ∈
N be independent vectors such that ∃l ∈ N∗ with l(xi) = 1, D ≤ i ≤ k and let τ = [convex hull
of x0, ..., xk in the hyperplane l = 1]. Using N∗, induce a volume element on τ . Then (in the
notation of Chapter I)

vol(τ) =
mult 〈x0, ..., xk〉

k!

Proof. Choose an isomorphism N ' Zk+1 so that x0 = (1, 0, ..., 0) and l(a0, ..., ak) = a0. If
xi = (1, a

(i)
1 , ..., a

(i)
k ), then

mult 〈x0, ..., xk〉 = det


1 0 · · · 0

1 a
(1)
1 · · · a

(1)
k

...
...

...
...

1 a
(k)
1 · · · a

(k)
k


and

Vol (τ) =
1

k!


a

(1)
1 · · · a

(1)
k

...
. . .

...

a
(k)
1 · · · a

(k)
k
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2.3 Reduction of the theorem to a construction
Now return to the situation in the introduction to this chapter:

f : Xn −→ C1 3 0

with res f : X \ f−1(0) −→ C \ {0} smooth. Fix a generator t of m0,C , and for all d ≥ 1, let

Cd = normalization of C in the field extension generated by t
1/d

πd : Cd −→ C, the canonical morphism,
0d ∈ Cd, the point over O.

We will tkae C ′ to be one of these curves Cd. Now by Hironaka’s resolution theorem, we may
blou up X by a sequence of monoidal transformations with non-singular centers all lying over 0 ∈ C
until we find:

g : X ′ −→ X birrational and projective

with X ′ non singular, (f ◦g)−1(0)red a union of non singular components and E1, . . . , En cross-
ing transversely.

The only problem is that if n(i) = OrdEi (t) so that

(f · g)
−1

(0) =
∑

n(i)Ei as divisor on X ′

then the n(i) may be bigger than one, hence (f · g)
−1

(0) may not be reduced. To reduce the
n(i), we must replace c by a suitable Cd. It is clear that we may as well renae X ′ to be the original
X and assume that our starting point is a non-singular X with f−1(0)red good. Now for all d ≥ 1,
let

Xd = normalization of X ×C Cd
fd : Xd −→ Cd the projection
Ud = f−1(Cd − (0d)).

What doesXd look like? To describe it, choose a point x ∈ X over 0 ∈ C. Suppose x ∈
⋂r
k=1Eik

and x /∈ El for all j 6= i1, . . . , ir. Then formally at x, the pair of morphism X 7→ c, x 7→ 0 is equiv-
alent to the morphism An → A1 given by 0 7→ 0.

This is where we use characteristic 0: In fact, if yj ∈ OX,x is a local equation for the divisor
Eij , then

t = u
∏

y
n(ij)
j , u ∈ O∗X,x.

In the completion ÔX,x, y1, . . . , yr are part of a system of parameters since the Eij meet trans-
versely. Moreover, since char k - n(i1), u has an n(i1)th root v in Ô∗X,x. So we may replace y1 by

v · y1, and find local equations yj ∈ ÔX,x of Eij such that t =
∏
y
n(ij)
j , i.e.,

ÔX,x
≈←→ k[[y′1, . . . , y

′
n]]

t ←→
r∏
j=1

y
n(ij)
j

Therefore, formaly at all points over x:

Xd X

Cd C
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satisfies the universal property of the normalization of An×A1A1 with projections A1 dth power−→ A1

and An p−→ A1 (Note that normalization commutes with taking completions.).

Let s = t
1/d . Then

An ×A1 A1 =
[
the hypersurface H : sd =

∏
x
n(ij)
j in An+1

]
Let

e = gcd(d, n(i1), . . . , n(ir)).

Then

H =
⋃

ethroots of 1

Hζ

Hζ =

hypersurface sd/e = ζ ·
r∏
j=1

x
n(iJ )/e
j

.
Hζ is the image of the morphism

Anx̃ −→ An+1
(x,s)

xi = (x̃i)
d

s = ζ
e/d ·

∏r
j=1 x̃j

n(ij)

hence is irreducible, and its coordinate ring is the subring:

k

x1, . . . , xn,

r∏
j=1

x
n(ij)/d
j

 ⊆ k[x1/d
1 , . . . , x

1/d
n

]
Thus if we let

M = Zn +

(
n(i1)

d
, . . . ,

n(ir)

d
, 0, . . . , 0

)
Z ⊆ Qn,

then Hζ is isomorphic to the affine embedding of the torus T with character group M , given
by the semi-group in M generated by

(1, 0, . . . , 0)
...

(0, 0, . . . , 1)(
n(i1)

d
, . . . ,

n(ir)

d
, . . . , 0

)
.

The cone generated by this semi-group in MR ∼= Rn is just the positive octant (R+)
n, so we

can normalize as in the beginning of chapter 1:normalization

of Hζ

 ∼= Spec k[. . . , xα, . . .]α∈M∩(R+)n

Going back, this means that x ∈ X splits into e distinct points x′ ∈ Xd and that each of them:

ÔXd,x′ ∼= k[[. . . , yα, . . .]]α∈M∩(R+)n

Under this formal isomorphism:

∑
Ei given by

∏
yi = 0

corresponds to
∏

xi = 0

defining Hζ \ T.
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Therefore Ud ⊆ Xd is a toric variety. Moreover, the components of Xd \Ud are the components
of the inverse image in Xd of the various Ei ⊆ X. The inverse image of Eij near x′, with reduced
structure, is given by OXd,x

′
/√

(yj)
, and

̂OXd,x′/√
(yj)

∼= k[[...,yα,...]]α∈M∩(R+)n/√
(yj)

∼= k[[...,yα,...]]α∈M∩(R+)n/(...,yα,...)αj>0

∼= k[[. . . , yα, . . .]]αj=0,α∈M∩(R+)n .

This again is an integrally closed domain of toroidal type. Thus the inverse image of each Ei
is a disjoint union of normal varieties. This proves:

Lemma 2.3.1. Ud ⊆ Xd is a toroidal variety without self-intersection.

The next question is: how does Xd vary with d ? Let ν = lcm(n(1), . . . , n(N)). We are only
interested in d such that ν | d. Suppose d = e · ν and consider ÔXd,x′ again at a random point x.
Then

n(ij) ·m(ij) = ν, 1 ≤ j ≤ r
and

M = Zn +

(
1

e ·m(i1)
, . . . ,

1

e ·m(ir)
, 0, . . . , 0

)
Z.

Let

MO = Zn +

(
1

m(i1)
, . . . ,

1

m(ir)
, 0, . . . , 0

)
Z.

Suppose α ∈M ∩ (R+)
n. Then either:

1. α1, . . . , αr > 0, in which case

α =

(
1

e ·m(i1)
, . . . ,

1

e ·m(ir)
, 0, . . . , 0

)
+ β, β ∈M ∩ (R+)

n

or

2. some αl = 0, 1 ≤ l ≤ r. Now

α = v + p ·
(

1

e ·m(i1)
, . . . ,

1

e ·m(ir)
, 0, . . . , 0

)
where v is an integral vector. Hence e ·m(il) | p. It follows e | p, and

α ∈MO ∩ Rn+

This means that the semi-groupM∩Rn+ is generated byMO∩Rn+ and the vector
(

1/e·m(i1), . . . ,
1/e·m(ir), 0, . . . , 0

)
.

In therms of rings, this means that ÔXd,x′ is generated by ÔXν ,x′ and t
1/d . Therefore the canonical

morphism

Xd −→ Xν ×Cν Cd
induces isomorphisms between the complete local rings of corresponding points, hece it is étale.

But it is also finite and birational, hence it is an isomorphism. This proves:

Lemma 2.3.2. 2 If ν | d, then
Xd

≈−→ Xν ×Cν Cd,
is an isomorphism. Hence the closed fibres f−1

d (0d) is independent of d so long as ν | d, and
the projection Xν → Xd induces a bijection between the strata of Xν \ Uν and the strata Xd \ Ud.

2In fact, one also checks easily that t
1
d vanishes to order 1 on all compononents of Xd \ Ud, hence f−1

d (0d) is
also a reduced scheme. But we don’t actually use this particular fact.
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Next, let ∆d be the polyhedral complex associated to Ud ⊆ Xd. I claim that there is a canonical
polyhedral isomorphism

∆d
≈−→ ∆ν

and in fact a commutative diagram:

R.SUd(Xd) ∆d

R.S.Uν (Xν) ∆ν

Ord

≈

Ord

(the first vertical arrow given by composing φ : Spec k[[t]]→ Xd with the projection p : Xd →
Xν). In fact, let Yd ⊆ Xd and Yν ⊆ Xν be corresponding strata as in Lemma 2.3.2. Then
p−1(Star(Yν)) = Star(Yd) and we get homomorphisms:

MYd MYν
p∗

p∗

where p∗ is the pull-back of Cartier divisors, whereas p∗ is the norm (i.e., apply norm to local
defining equations). Then p∗ ◦p∗ is just multiplication by e. Moreover p∗ is injective (in fact, since
p is a bijection on f−1

d (0d), p∗ is injective on Weil divisors concentrated on f−1
d (0d)). Thus p∗ ◦ p∗

is multiplication by e as well, and

MYd
R

≈←− MYν
R

is an isomorphism. Clearly p∗D is effective if and only if D is effective, so this induces a dual
isomorphism

σYd
≈−→ σYν .

These clearly patch up into an isomorphism ∆d
≈−→ ∆ν commuting with Ord.

However, the one thing which changes when you replace ∆ν by ∆d is the integral structure.
The integral structures on corresponding polyhedra σYd,σ

Yν are given by the functions defined by
MYd and MYν respectively. I claim:

MYd = p∗MYν + Z ·
(
t
1/d
)

or equivalently:

Lemma 2.3.3. Every Cartier divisor D on Star(Yd), supported by f−1
d (0d), is of the form p∗D1 +

a ·
(
t
1/d
)
, a ∈ Z.

Proof. In the notation used above, the morphism p : Xd −→ Xν corresponds formally, at every
x′ ∈ Xd, to the morphism of affine torus embeddings:

Spec k[. . . , xα, . . .]α∈M∩Rn+
−→ Spec k[. . . , xα, . . .]α∈MO∩Rn+

But if we choose x′ ∈ Yd, then the formal isomorphisms induce isomorphisms

MYd ∼= M

MYν ∼= M0

which lie in a diagram:

MYd M

MYν M0

∼=
p∗

∼=

⊆
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Also, (t) corresponds in these isomorphisms to a0 = (n(i1, . . . , n(ir), 0, . . . , 0)). Since M =
M0 + α0/d · Z, this proves the lemma 2.3.3.

Finally, in all the toric varieties Ud ⊆ Xd, we are given a particular positive Cartier divisor
with support exactly Xd \Ud, namely

(
t
1/d
)
. Let

(
t
1/d
)
define the function ld : ∆d −→ R+. Note

that via the canonical isomorphism ∆d
≈−→ ∆ν , ld = ν/dlν . As in the end of section 2.2, we can

therefore define a compact polyhedral complex

∆∗d
·
= {x ∈ ∆d | ld(x) = 1}.

By restriction, we get an integral structure M∗d on ∆∗d. Moreover, by central projection and
the canonical isomorphism ∆d

≈−→ ∆ν , we get a canonical isomorphism

∆∗d
≈−→ ∆∗ν ,

and by Lemma 2.3.3, the integral structures are related by

M∗d =
d

ν
M∗ν + Z.

In other words, via these isomorphisms

the integral lattice

(∆∗d)Z in ∆∗d

 =


the lattice of (∆∗ν)ν/dZ

of points in ∆∗ν with

coordinates in ν/dZ


Now the Main Theorem of the next Chapter, applied to ∆∗ν , says that there is an integer e and

a projective subdivision [σα] of ∆∗ν such that:

1. vertices of the subdivision lie in (∆∗ν)1/eZ,

2. for all σα, with the volume element induced from ∆∗ν ,

vol(σα) =
1

edα · (dα)!
, dα = dimσα.

It follows that if we interpret this as a subdivision of ∆∗eν instead of ∆∗ν , then:

1. vertices of the subdivision lie in (∆∗eν)Z

2. for all σα of dim = dα, vol(σα) = 1/(dα)!

Now apply the results of section 2.2: {σα} defines a proper birational morphism:

f : X{σα} −→ Xeν , f−1(Ueν) ∼= Ueν .

Since the subdivison is projective, the morphism is defined by blowing up a suitable sheaf of
ideals. By Theorem 2.2.2, t

1/eν vanishes to order 1 on all components of X{σα} \ Ueν , and X{σα}
is non-singular. It follows from this automatically that the components of X{σα} \ Ueν are non-
singular and cross transversely (because Ueν ⊆ X{σα} is a toric variety without self-intersection).
Therefore X{σα} has all the required properties.
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Chapter 3

Tropical Geometry

In this chapter we start by introducing tropical hypersurfaces which are an analogue of algebraic
varieties over the tropical semiring T. Then we prove structure theorems showing that these are
weighted polyhedral complexes that are balanced in a certain sense (see Proposition 3.1.3 and
Theorem 3.1.9).

Later we extend the definition of tropical hypersurface to higher codimension using the process
of tropicalization for a subvariaty of an algebraic torus defined over a valued field. Then after
introduce the necessary machinery we generalize the structure theorems of tropical hypersurfaces
to arbitrary tropical varieties.

For the definitions coming from polyhedral geometry used in this chapter we refer the reader
to the appendix.

3.1 Tropical Hypersurfaces
Tropical geometry is the study of tropical varieties which are geometric objects constructed from
polynomials with coefficient in the tropical semiring :

Definition 3.1.1. The tropical semiring (or semiring of tropical numbers) is the set T = R∪{∞}
together with two binary operations ⊕ and � given by a⊕ b := min{a, b} and a� b := a+ b. �

It is called a semiring because it satisfy all the axioms of a ring except the one that assure the
existence of inverse for the addition.

As with usual commutative rings, we can consider polynomials or more generally Laurent
polynomials over T. These are going to be called tropical polynomials and they will be expressions
of the form

f(x1, . . . , xn) =
⊕
u∈Zn

cu � xu1
1 . . . xunn

where the sum over Z has only finite support, the xi are variables and

xu1
1 . . . xunn = xu = x1 � · · · � x1︸ ︷︷ ︸

u1 times

� · · · � xn � · · · � xn︸ ︷︷ ︸
un times

Remark 3.1.2. The formal polynomial above induce naturally the tropical function

x 7→ min
u∈Z
{au + u1x1 + · · ·+ unxn} = min

u∈Z
{au + u · x}

but it is not determined by it. For example min{x+ y, 2x, 2y} = min{2x, 2y} ∀x, y ∈ R∪{∞} but
as polynomials we have

xy ⊕ x2 ⊕ y2 6= x2 ⊕ y2

�

Now given a polynomial f , an element w ∈ Rn such that the minimum in f(w) = minu∈Z{au +
u ·w} is attained two times is called a zero of f and the set

V (f) = {x is a zero of f} (3.1)
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is called the tropical hypersurface attached to f . Notice that this set only depend on the tropical
function induced by f . We will define tropical varieties in general in the next section after we see
the concept of tropicalization of algebraic varieties.

When f is a tropical polynomial in two variable with at least two monomials, V (f) is called a
plane tropical curve.

Proposition 3.1.3. A tropical hypersurface induced by a tropical polynomial f in n-variables is
the support of a Γval-rational polyhedral complex of pure dimension n− 1 in Rn.

Proof. Denoting by the same letter f the function induced by the tropical polynomial we define
Σf as the coarsest polyhedral complex such that f is linear on each cell in Σf . The support of Σf
is all Rn and the cells of dimension n have the form

σu = {w ∈ Rn+1 | f(w) = cu + w · u}

where cu moves through the coefficients of f .

We have that V (f) is the support of the (n − 1)-skeleton of Σf and the proposition follows
directly from this.

Example 3.1.4. A tropical line is a tropical curve given by a polynomial of the form a�x⊕b�y⊕c.
It consist in 3 rays with slopes 1, 0 and∞ coming from the point (c−a, c−b) as Figure 3.1 shows. �

Figure 3.1: A tropical line

Next we will pass to understand this polyhedral complex in terms of a dual construction. To
make this precise we need to introduce a new concept.

Given any multivariate Laurent polynomial (not necessary over the tropical semiring)

f =
∑
u∈Zn

cux
u

we can attached a simple geometric object in Rn to it called its Newton polytope given by

Newt(f) = conv{u ∈ Zn | cu 6= 0} ⊆ Rn

Of course, as the additive identity of the tropical semiring is ∞ the Newton polytope of a
tropical polynomial is given by the convex hull of all u such that cu 6=∞.

As a starting point let us notice that when f is a tropical polynomial its Newton polytope
depend only on the function induced by f and it can be computed by a simple formula from it.

Theorem 3.1.5. For a tropical polynomial f =
⊕

u∈Zn cu � xu we have

Newt(f) = {v ∈ Rn | ∃a ∈ R s.t f(rw) ≤ a+ v · rw ∀w ∈ Rn and r � 0}
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Proof. Let us called A the set in the right. Is not difficult to see that A is convex. Also as for
every cu 6=∞ we have f(w) = minu{cu + u ·w} ≤ cu + u ·w ∀ w we get u ∈ A. So we conclude
Newt(f) ⊆ A.

In the other hand if v ∈ A we have f(rw) ≤ a + v · rw for large r and so dividing by r and
taking limits we get

min
u s.t cu 6=∞

{u ·w} = lim
r→∞

1

r
f(rw) ≤ lim

r→∞

1

r
(a+ v · rw) = v ·w

And from this we get that v is in the Newton polytope. In fact, if this is not true then by
the hyperplane separation theorem we can separate v from the Newton polytope with a linear
functional and hence there is some w ∈ Rn such that w ·v < a < w ·u ∀u with cu 6=∞ and some
constant a ∈ R.

Next we have to notice that there is a natural subdivision of the Newton polytope induced
by the polynomial f , this is the regular subdivision ∆ of Newt(f) given by the weight vector
(cu | u ∈ Newt(f) ∩ Z). The construction is given in Definition A.9 in the appendix.

Using this regular subdivision we can state the duality result in which we are interested.

Theorem 3.1.6. The polyhedral complex defining V (f) with f a tropical polynomial in n variables
is dual to the polyhedral complex given by the regular decomposition ∆ of the Newton polytope of
f .

Proof. Let P = conv{(u, x) ∈ Rn+1 | x ≥ cu, cu 6= 0}. The regular subdivision of Newt(f) induced
by the weights val(cu) consist of the polytopes π(F ) as F varies over all bounded faces of P and
π : Rn+1 → Rn is the projection into the first n coordinates.

The bounded faces of P are of the form

F = facey(P ) = {(v, c) ∈ P | (v, c) · y ≤ (w, d) · y for all (w, d) ∈ P}

for some y ∈ Rn+1 with last coordinate positive, without lost of generality we can take this last
coordinate to be 1. Then y = (z, 1) with z ∈ Rn and replacing we get that the polytope in the
regular decomposition is

π(F ) = {v ∈ Newt(f) | ∃c with (v, c) ∈ P and v · z + c ≤ w · z + d for all (w, d) ∈ P}
= conv{u ∈ Zn | cu 6= 0 and u · z + cu ≤ w · z + cw for all cw 6= 0}
= conv{u ∈ Zn | u · z + cu = f(z)}

If we let I(F ) = π(F ) ∩ Zn then the polytope π(F ) of the regular decomposition above will
correspond to the set

F (σ) ={z ∈ Rn | face(z,1)(P ) = F}
={z ∈ Rn | f(z) = u · z + cu for at least all u ∈ I(F )}

Is easy to see that F (σ) is a cell of the polyhedral complex of V (f) and the union of all this
sets is V (f). So the dual of the regular decomposition is exactly V (f).

An important case of the theorem above is given when the tropical polynomial f has constant
coefficients, i.e, all its monomials have coefficient 0 (the multiplicative identity of T) attached.

Corollary 3.1.7. Let f = ⊕u∈Znx
u be a tropical polynomial with constant coefficients. Then V (f)

is a (n− 1)-dimensional fan in Rn and it is the (n− 1)-skeleton of the normal fan to the Newton
polytope of f .

Proof. When f has constant coefficients the decomposition of the Newton polytope associated by
f is given by the vector (cu)u = 0, and so the decomposition is the trivial one with only one cell
equal to Newt(f).

Hence, cells of the decomposition are equal to faces F of Newt(f) and by the proof of 3.1.6
above these correspond exactly to the sets F (σ) = {z ∈ Rn | facez(P ) = F} so F (σ) = NNewt(f)(F )
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Figure 3.2: A balanced fan of dimension 1.

and then V (f) is the normal fan of Newt(f).

Next we will prove that the polyhedral complex underlying the tropical hypersurface can be
endowed with some natural weights in the cells of maximal dimension such that it become a bal-
anced polyhedral complex.

To do this first we introduce the concept of balanced polyhedral complex. The basic idea is
given by the case in which the polyhedral complex is a fan Σ of pure dimension 1. Then it consist
in a collection of rays σ coming from the origin. Let vσ denote the first lattice point in the ray σ
coming out from zero and m(σ) the weight corresponding to σ, then the fan Σ is balanced if∑

σ∈Σ

m(σ)vσ = 0

We generalize this concept to fans of higher pure dimension. Once we do it we can use the fans
starΣ(P ) (defined in A.8) to extend the definition to general polyhedral complexes. We do all this
as follows.

Definition 3.1.8. Let Σ be a fan in Rn of pure dimension d endowed with weights m(σ) ∈ N on
all maximal cones σ ∈ Σ. For a cone τ ∈ Σ of dimension d− 1 let L be the linear space generated
by τ . As τ is rational LZ = L ∩ Zn is a lattice of rank d− 1, we used this to define the lattice

N(τ) := Zn/LZ ∼= Zn−d+1

Now for each σ ∈ Σ containing τ as a proper face the set (σ + L)/L is a one dimensional cone
in N(τ)R. Let vσ the first lattice point in this ray. The fan Σ will be balanced at τ if∑

σ)τ
m(σ)vσ = 0 (3.2)

and it will be balanced if it is balanced at all τ ∈ Σ with dimension d− 1.

Now let Σ be a Γval-rational polyhedral complex of pure dimension d with weights m(P ) ∈ N
on each d-dimensional cell P . The fan starΣ(Q) inherits a weighting function m. The complex Σ
is balanced if starΣ(Q) is balanced for all Q ∈ Σ of dimension d− 1. �

With this definition we are ready to prove the balancing condition for tropical hypersurfaces,
this is the fact that the polyhedral complex of a tropical hypersurface is balanced with some nat-
ural weights.

This weights are defined using Theorem 3.1.6. As the polyhedral complex Σ of a tropical hyper-
surfaces is dual to the regular subdivisions ∆ of its Newton polytope, every facet σ of Σ correspond
to an edge e(σ) in ∆. We define the multiplicity m(σ) of this facet as the lattice length of the edge
e(σ), i.e, the number of lattice points in the edge minus one.

With this weights we proceed to prove the balancing condition for hypersurfaces.

Theorem 3.1.9. Any tropical polynomial f in n variables define a tropical hypersuface V (f) that
is the support of a (n−1)-dimensional polyhedral complex balanced with respect to the weights m(σ)
defined above.

Proof. When n = 1 the set V (f) is finite and the statement becomes trivial.
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For n = 2 we have that V (f) is a polyhedral complex of pure dimension 1 and we need to
prove that starV (f)(τ) is balanced for all its vertices τ . The cell τ is dual to a convex polygon Q
in the regular subdivision of the Newton polytope ∆. Each vector vσ in (3.2) is a primitive lattice
vector perpendicular to an edge of Q and the vector m(σ)vσ is precisely an edge of Q rotated by
90 degrees. Then

∑
σ)τ m(σ)vσ = 0 because the sum of the edges vectors of any polygon is 0.

For n ≥ 3 we can proceed in a similar way to n = 2. We need to prove that for any cell τ
of codimension 1 the fan starV (f)(τ) is balanced. Noticed that the only cone of codimension 1 in
starV (f)(τ) is τ so we only need to prove that it is τ -balanced. For this we need to pass from the
vector space Rn to the vector space N(τ)R of dim 2 by working modulo L. In terms of the dual
space this means to pass to the plane containing the polygon Q dual to τ in ∆. As L is orthogonal
to Q we get that the fan given by the cones (L+ σ)/L in N(τ)R is the normal fan to the polygon
Q. So in the same way as for n = 2 we can conclude because the sum of the edges vectors of a
polygon is 0.

3.2 Valued Fields and Gröbner Basis
In this section we introduce some commutative algebra that will be useful in the sections to follow.
We start with a brief reminder valuations over fields and then we developed a version of Gröbner
basis specially designed for polynomial rings over such fields.

3.2.1 Valued Fields
Definition 3.2.1. A rank one valuation or simply a valuation over a field K is a function
val : K → R ∪ {∞} satisfying the following properties:

• val(a) =∞ ⇐⇒ a = 0

• val(ab) = val(a) + val(b)

• val(a+ b) ≥ min{val(a), val(b)}

In this context we said that K is a valued field. We introduce the valuation group given by
Γval := val(K∗), it is an abelian totally ordered group. The valuation ring given by

R = {a ∈ R | val(a) ≥ 0}

that is a local ring with maximal ideal

mK = {c ∈ K | val ≥ 0}

and we also consider the residue field given by k = R/mK . �

Example of valued fields are any field k with the trivial valuation given by val(a) = 1 ∀a ∈ K∗,
the field Qp of p-adic numbers together with its p-adic valuation and the function field k(C) of an
algebraic curve C with the valuation given by computing the order of poles at a fixed point p. But
along this document the most important valued field will be the next one.

Example 3.2.2 (Field of Puiseux series). For any field k we defined the field k{{t}} of Puiseux
series as the set of all the formal power series

c(t) = c1t
a1 + c2t

a2 + c2t
a2 + . . .

where each ci ∈ k and a1 < a2 < a3 < . . . are rational with a common denominator. In other
words

k{{t}} =
⋃
n≥1

k((t1/n))

where k((t1/n)) is the field of Laurent series over t1/n.
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This field has a natural valuation defined by

val : k{{t}}∗ → R∑
n≥1

cnt
an 7→ a1

�

One reason why this field is important is because of the following result whose proof can be
seen in [Rib99] p. 186.

Theorem 3.2.3. When k is algebraically closed of characteristic 0 the field k{{t}} is the algebraic
closure of the field k((t)) of Laurent series and in particular is algebraically closed.

The valuation defined over the field K{{t}} has a canonical split given by the map

ψ : Γval = Q→ k{{t}}∗

a 7→ ta

this means that ψ satisfy val(ψ(a)) = a. In general such a split ψ exists for any algebraically closed
field as we prove now.

Proposition 3.2.4. For any algebraically closed field K with a valuation val there is group homo-
morphism ψ : Γval → R such that val ◦ ψ = idΓval

Proof. As K is algebraically closed both the multiplicative group (K∗, ·) and the valuation group
(Γval,+) are divisible:

• From (Γval,+) being divisible, as it is also torsion free, we get that it should be a Q vector
space and hence it has a basis {wi}i∈I

• From (K∗, ·) being divisible we get that for any a ∈ K∗ there is a group homomorphism
ψa : Q→ K∗ such that ψa(1) = a.

Now for each wi ∈ Γval we can construct a homomorphism ψi : wiQ→ K∗ such that if val(a) = wi
then ψi(wi) = a and hence ψ = ⊕iψi : Γval → K∗ is the desired splitting homomorphism.

By an abuse of notation we are going to denote this map by a 7→ ta as in the case of Puiseux
series.

3.2.2 Gröbner Basis for Valued Fields
In what follows we will introduce a theory of Gröbner basis specially designed for homogeneous
ideals in a polynomial ring with coefficients in a valued field. For technical reasons we will assume
that the valuation splits. Because of Proposition 3.2.4 above we know that this is true whenever
K is algebraically closed, it is also true when K has the trivial valuation.

We start in the same way as for usual Gröbner basis defining the ideal of initial terms. For this
we need to define the initial term of a single polynomial, this depend on a weight vector w ∈ Rn+1

who takes the roll of the monomial order in the usual Gröbner basis.

For a polynomial f ∈ K[x0, . . . , xn] we can construct its tropicalization as the real function
Rn+1 → R given by

Trop(f)(w) = min{val(cu) + w · u | u ∈ Nn+1 and cu 6= 0}

TakingW = Trop(f)(w) the initial form of f with respect tow is the polynomial in k[x0, . . . , xn]
defined as
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inw(f) =
∑

u∈Nn+1 s.t val(cu)+w·u=W

cut−val(cu)xu

Notice that f and inw(f) are in different polynomial rings and that the monomials appearing
in inw(f) are a certain subset of the monomials in f . We can expressed inw(f) also as follows.

inw(f) = t−W
∑

u∈Nn+1

cutw·uxu

= t−Trop(f)(w)f(tw0x0, . . . , twnxn)

Now for a homogeneous ideal I ⊆ K[x0, . . . , xn] we set its initial ideal as

inw(I) = 〈inw(f) | f ∈ I〉 ⊆ k[x0, . . . , xn]

A finite set G = {g1, . . . , gn} ⊆ I will be called Gröbner basis for I with respect to w if

inw(I) = 〈inw(g1), . . . , inw(gn)〉

Remark 3.2.5.

1. Even though we don’t put in the definition that the Gröbner basis generate the ideal I this
is always true as shown in [Cha13]. But if we apply the same definition of Gröbner basis to
ideals that are not homogeneous then this is no longer true.

2. The usual Gröbner basis with respect to the monomial weight order determined by −w
correspond to the particular case of a field with trivial valuation of the Gröbner basis treated
here with respect to w.

�

The first result is that Gröbner basis do exist and we can take it homogeneous.

Proposition 3.2.6. Let I ⊆ K[x0, . . . , xn] be a homogeneous ideal. Then there is a Gröbner basis
of I consisting of homogeneous polynomials, in particular the initial ideal inw(I) is homogeneous.
Also given g ∈ inw(I) there is f ∈ I such that g = inw(f).

Proof. Noticed that if f =
∑
i≥0 fi with each fi homogeneous we have inw(f) =

∑
inw(fi) where

the sum goes through the fi such that Trop(f)(w) = Trop(fi)(w) and hence we have

inw(I) = 〈inw(f) | f ∈ I with f homogeneous〉

So taking a finite subset of this generating set, as inw(f) is homogeneous when f is homogeneous,
we get that I has a Gröbner basis made of homogeneous ideals.

Now given g ∈ inw(I) we have g =
∑
aux

uinw(fu) for some fu ∈ I, au ∈ k∗. Taking a lift cu
of au to K∗ we can define

f =
∑
u

cut
−Wuxufu for Wu = Trop(fu)(w) + w · u

Then by construction Trop(f)(w) = 0 and inw(f) =
∑
aux

uinw(fu) = g.

Next we iterate this construction by taking initial forms of initial forms. For this as inw(f) is
a polynomial with coefficients in k we need to endowed this field with the trivial valuation.

Lemma 3.2.7. Let f ∈ K[x0, . . . , xn] and v,w ∈ Rn. There for every ε > 0 small enough we
have

inv(inw(f)) = inw+εv(f) (3.3)

Proof. If f =
∑

u cux
u and W = Trop(f)(w) we have

inw(f) =
∑

u∈Nn+1 s.t
val(cu)+w·u=W

cutw·u−Wx
u
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and if W ′ = min{v · u | val(cu) + w · u = W} then

inv(inw(f)) =
∑

u∈Nn+1 s.t
v·u=W ′

cutw·u−Wx
u (3.4)

Now for small ε small enough we have that

Trop(f)(w + εv) = min(val(cu) + w · u + εv · u) = W + εW ′

and the minimum has equality if an only if val(cu) +w · u = W and εv · u = εW ′. Hence we have
inw+εv = inv(inw(f)) as we wanted.

The idea now is to extend equation (3.3) from a fixed polynomial f to an entire homogeneous
ideal I. We will do this by steps, the first step being the following lemma.

Recall that a monomial ideal is an ideal that can be generated by monomials and if I is a
monomial ideal then f =

∑
cux

u ∈ I =⇒ xu ∈ I.

Lemma 3.2.8. Let I be a homogeneous ideal in K[x0, . . . , xn] and fix w ∈ Rn+1. Then there
exists v ∈ Rn+1 such that for every ε > 0 small enough the ideals inw+εv(I) and inv(inw(I)) are
monomial ideals and

inv(inw(I)) ⊆ inw+εv(I) (3.5)

Proof. First notice that from Proposition 3.2.6 the ideal inw(I) is homogeneous and so equation
(3.5) makes sense.

Now assuming that there is a v such that inv(inw(I)) is a monomial ideal we will show it
satisfy (3.5). For this take generators inv(inw(I)) = 〈xu1 , . . . , xus〉. By Proposition 3.2.6 again
there are fi ∈ I such that inv(inw(fi)) = xui . By Lemma 3.2.7 we have for ε small enough
inv(inw(fi)) = inw+εv(fi) for all all i at the same time and this imply inv(inw(I)) ⊆ inw+εv(I).

Next we will prove that there is such a v with inv(inw(I)) a monomial ideal. For v ∈ Rn
consider the ideal Mv generated by all the monomials in inv(inw(I)). As the polynomial ring is
Noetherian we can chose v such that Mv is not contained in any other M ′v. If inv(inw(I)) is not
a monomial ideal then there is f ∈ I such that no term of inv(inw(f)) is in Mv. Take v′ ∈ Rn+1

such that inv′(inv(inw(f))) is a monomial, to find such a v′ use equation (3.4) and consider v′ such
that facev′(Newt(inv(inw(f)))) is only a vertex so v · u is minimized only for one u. By Lemma
3.2.7 for ε small enough inv+εv′(inw(f)) is this monomial. On the other hand each monomial in
Mv can be written as xu = inv(inw(g)) for some g and then xu = inv+εv′(inw(g)) for epsilon
small enough, this implies that Mv ⊆Mv+εv′ but because of the monomial constructed above we
actually have Mv (Mv+εv′ . This contradicts our choise of Mv and so inv(inw(I)) is a monomial
ideal.

We can now modify our v such that inv+εw(I) is at the same time also a monomial ideal. To
see this we work in a similar way as before, define Mε

v as the ideal generated by all the monomials
in inv+εw(I) and between all v such that inv(inw(I)) is a monomial ideal take it such that Mε

v

is not contained in any other Mε
v′ . If inv+εw(I) is not a monomial ideal we take f ∈ I such that

no term of inv+εw(f) is in Mε
v. Then we take v′ so that facev′(Newt(inw+εv(f))) is a vertex. In

the same way as above this implies Mε
v ( Mε

v+εv′ . Taking ε small we have Mv+εv′ = Mv so that
inv(inw(I)) is still a monomial ideal. This contradiction show us that inv+εw(I) is also a monomial
ideal.

From now on we will fixed the notation SK = K[x0, . . . , xn] and Sk = [x0, . . . , xn].

Given an ideal I ⊆ SK we can measure its size using its Hilbert function. These is the function
N → N given by d 7→ dimK(SK/I)d. For d � 0 the Hilbert function agrees with a polynomial,
called the Hilbert polynomial of I, that encodes important invariant of the ideal. We will show
next that the Hilbert function of an ideal coincide with the Hilbert function of the initial ideal.
First we do if for monomial initial ideals.

Lemma 3.2.9. Let I ⊆ SK be a homogeneous ideal and take w ∈ Rn+1 such that inw(I) is a
monomial ideal. Then the monomials xu of degree d that are not in inw(I) form a K-basis for
(SK/I)d.
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Proof. Consider the set Bd of all monomials xu not contained in inw(I). The image of this set
in (SK/I)d is linearly independent over K. To see this noticed that a linear combination gives
a polynomial f =

∑
cux

u ∈ Id with no term belonging to inw(I). But from f ∈ I we get
inw(f) ∈ inw(I) and as this ideal is a monomial ideal we get xu ∈ inw(I) for some u. This
contradiction shows that dimK(SK/I)d is bigger that the amount of monomials not contained in
inw(I)d and hence dimk inw(I)d ≥ dimK Id.

Now for each monomial xu ∈ inw(I)d, choose fu ∈ Id with inw(fu) = xu. The set {fu |
xu ∈ inw(I)d} is linearly independent in SK . Indeed, if not there are au ∈ K not all zero with∑

u aufu = 0. Let fu = xu +
∑
cuvx

v and looking at the coefficient u′ in the linear combination
above we get au′ +

∑
u6=u′ aucuu′ = 0. Suppose u′ is taken such that val(au) + w · u is minimal.

Then, looking at the valuation in the left-hand side of this equation, as the minimum should be
attained two times in particular there is ū different from u′ such that val(aū)+val(cūu′) ≤ val(au′).
And from here

val(aū) + val(cūu′) + w · u′ ≤ val(au′) + w · u′ ≤ val(aū) + w · ū

Which contradicts the fact that inw(fū) = xū (we no longer have that Trop(fū)(w) attains the
minimum at ū).

This shows dimK Id ≥ dimk inw(I)d. Hence the dimension of this ideals are equal and then

dimK(SK/I)d = dimk(Sk/inw(I))d

With Bd a K basis for (SK/I)d.

Now we drop the hypothesis of inw(I) being monomial and get the last equality of dimensions
anyway.

Proposition 3.2.10. For any w ∈ Rn+1 and any homogeneous ideal I in SK , the Hilbert function
of I agrees with that of its initial ideal inw(I) ⊆ Sk, i.e,

dimK(SK/I)d = dimk(Sk/inw(I))d

for all d ≥ 0. In particular the Krull dimension of the rings SK/I and Sk/inw(I) coincide.

Proof. By Lemma 3.2.8 we can take v such that for small ε > 0 we have inv(inw(I)) ⊆ inw+εv(I)
and both are monomial ideals and then by Lemma 3.2.9 the set of monomials that are not in
inw+εv(I)d span (SK/I)d. Hence given xu ∈ inw+εv(I)d \ inv(inw(I))d there are polynomials fu
and f ′u with fu = xu−f ′u ∈ Id and no monomial of f ′u is in inw+εv(I)d. But then inw(fu) contains
only monomials not in inv(inw(I)) which contradicts inv(inw(f)) ∈ inv(inw(I)). This implies
inw+εv(I)d = inv(inw(I)). Now Lemma 3.2.9 applied to this monomial ideals give us

dimk(Sk/inw(I))d = dimk(Sk/inv(inw(I)))d and dimK(SK/I)d = dimk(Sk/inw+εv(I))d

From which we get
dimk(Sk/inw(I))d = dimK(SK/I)d

As we wanted.

With this we can deduce the result about iterated initial ideals we were looking for.

Corollary 3.2.11. Let I be a homogeneous ideal in K[x0, . . . , xn]. For any w,v ∈ Rn+1 if we
take ε > 0 small enough we have

inv(inw(I)) = inw+εv(I)

Proof. Take a basis g1, . . . , gs ∈ inv(inw(I)) and write each gi as inv(inw(fi)). By Lemma 3.2.7
above for ε small enough we have gi = inv(inw(fi)) = inw+εv(fi) and so inv(inw(I)) ⊆ inw+εv(I)
but by the proposition above, both inv(inw(I)) and inw+εv(I) have the same Hilbert function so
the inclusion is not strict.
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3.2.3 Gröbner Complexes
Now we will construct a polyhedral complex for each homogeneous ideal I ⊆ K[x0, . . . , xn]. The
polyhedra in our complex will be given by the topological closure of the sets

CI [w] = {v ∈ Rn+1 : inv(I) = inw(I)}

we denote by CI [w] this closure and by 1 the vector (1, . . . , 1) ∈ Rn+1.

Proposition 3.2.12. The set CI [w] is a Γval-rational polyhedron whose lineality space contains
the line R1. If inw(I) is not a monomial ideal, then there exists w′ ∈ Γn+1

val such that inw′(I) is a
monomial ideal and CI [w] is a proper face of the polyhedron CI [w′].

Proof. Given w we will start finding w′ ∈ Γn+1
val such that inw′(I) is a monomial ideal and

CI [w] ⊆ CI [w′]. For this use Lemma 3.2.8 to find a v such that for small epsilon inw+εv(I) is a
monomial ideal and choose w′ = w + εv. As ε can be arbitrarily small we have w ∈ CI [w′] and
then CI [w] ⊆ CI [w′] so we can conclude.

Next we prove that CI [w′] is a polyhedral complex. We will do this by choosing an adequate
Gröbner basis on I as follows: Take a monomial basis intw(I) = 〈xu1 , . . . , xus〉, by Lemma 3.2.9 for
each i the monomial of degree d = deg(ui) not contained in {u1, . . . ,us} form a basis of (SK/I)d.
Writing xui in this basis we find a polynomial g′i such that gi := xui − g′i ∈ I. By construction
inw′(gi) = xui and hence {g1, . . . , gs} is a Gröbner basis. Now CI [w′] has a Γval-rational polyhedral
structure shown by the equality

CI [w′] = {z ∈ Rn+1 | ui · z ≤ val(civ) + v · z for 1 ≤ i ≤ s, v ∈ Nn+1)}

where civ is the coefficient of the monomial xv in gi − xu. Let us prove this equality.

Suppose w̃ ∈ CI [w′] but one of the inequalities ui · z ≤ val(civ) +v · z is not valid when z = w̃.
For that i we have inw̃(gi) 6= xui but then inw̃(gi) contains other monomials of gi which is not
possible because inw̃(gi) ∈ inw̃(I) = inw′(I) and by construction the other monomials of gi are not
in inw′(I). This proves that CI [w′] is contained in the right-hand side.

For the other inclusion, it is enough to prove that if ui · w̃ < val(civ) + v · w̃ for all i, then
w̃ ∈ CI [w′], as such set of w̃ is dense in the right-hand side. Notice that ui · w̃ < val(civ) + v · w̃
is equivalent to inw̃(gi) = xui and so this for all i implies inw̃(I) ⊆ inw′(I) and as this two ideals
have the same Hilbert function we conclude inw̃(I) = inw′(I) from which w̃ ∈ CI [w′]. This proves
the equality.

Now we show that CI [w] is actually a face of the polyhedron CI [w], in particular it is a Γval-
rational polyhedron. To see this note that inw̃(I) = inw(I) implies inw̃(gi) = inw(gi) because if
this is not the case, as xui is the only monomial of inw̃(gi) and of inw(gi) that is contained in
inw′(I), then inw̃(gi) − inw(gi) ∈ inw(I) would be a polynomial without monomials in inw′(I)
which contradicts that inv(inw(I)) = inw′(I). Also as the set {inw(g1), . . . , inw(gs)} is a Gröbner
basis for inw(I) with respect to v we have

w̃ ∈ CI [w] ⇐⇒ inw̃(I) = inw(I)

⇐⇒ inw̃(gi) = inw(gi) ∀1 ≤ i ≤ s

So CI [w] is exactly the set of points z in the polyhedron CI [w′] that satisfy ui · z = val(civ) +v · z
whenever xv appears in inw(gi).

Finally, note that for a homogeneous polynomial f we have inw(f) = inw+λ1(f) from which
inw(I) = inw+λ1(I) and then v ∈ CI [w] =⇒ v + λ1 ∈ CI [w] so the lineality space of CI [w]
contains R1.

Since the line R1 is always contained in CI [w] we can regard this polyhedron as a polyhedron
in the quotient space Rn+1/R1. The idea is to prove that all this polyhedra form a polyhedral
complex in Rn+1/R1 as w varies. In order to prove this we will need some lemmas.

Lemma 3.2.13. Let I be a homogeneous ideal in K[x0, . . . , xn]. There are only finitely many
distinct monomial initial ideals inw(I) as w varies over Rn+1.

56



Proof. By [Mac01] any antichain of monomial ideals on K[x0, . . . , xn] is finite. Hence if the state-
ment is not true there are w,w′ ∈ Rn+1 such that inw(I) ( intw′(I) which is not possible because
by Proposition 3.2.10 inw(I) and intw′(I) have the same Hilbert function so the inclusion above
should be an equality.

Lemma 3.2.14. Let r ≤ s integers, A an r × s matrix of rank r with entries in K and fix
w ∈ Rs. There exists U ∈ GL(r,K) and an index set J = {l1, . . . , lr} ⊂ {1, . . . , s} such that
the r × r submatrix of UA with columns in J , denoted by (UA)J , is the identity matrix and
val((UA)ij) + wj ≥ wli for j /∈ J .

Proof. As A has rank r there are J such that val(det(AJ)) +
∑
j∈J wj is finite and we fix J such

that this number is minimal. In particular det(AJ) 6= 0 so we take U := AJ
−1 and then the matrix

UA has the identity matrix in the columns of J . Next to see the inequality with the valuations
noticed that if Jij = J \{li}∪{j} the matrix UAJij is an identity matrix with the column i changed
by the column j of UA and so det(UAJij ) = (UA)ij , hence

val(UA)ij =val(det(UAJij ))

=val(det(U)) + val(det(AJij ))

=− val(det(AJ)) + (val(det(AJij )) +
∑
j∈Jij

wj)−
∑
j∈Jij

wj

≤− val(det(AJ)) + (val(det(AJ)) +
∑
j∈J

wj)−
∑
j∈Jij

wj

=wli −wj

Now fix a homogeneous ideal I ⊆ S = K[x0, . . . , xn]. Let d ∈ N and choose a K-basis
{f1, . . . , fr} of Id, its homogeneous part of degree d. LetMd be the set of monomials of degree d
in S and consider Ad the (r × |Md|)-matrix whose entry (Ad)i,u is the coefficients in the monomial
u of the polynomial fi. Each J ⊆Md with |J | = r specifies an r× r minor det(AJd ) and the vector
with entries all this minors is the vector of plücker coordintates of the point Id in the Grassmanian
G(r, Sd). In particular is independent of the basis fi we chose.

By Lemma 3.2.13 above there exist D ∈ N such that any initial monomial ideal inw(I) of I has
generators of degree at most D. We define the polynomials

gd :=
∑
J⊆Md

|J|=r

det(AJd )
∏
u∈J

xu and g :=

d∏
d=1

gd

With this notations we have

Lemma 3.2.15. Let I ⊆ K[x0, . . . , xn] and gd, g as above. Also let ΣTrop(g) be the coarsest
polyhedral complex in which Trop(g) is linear. Them if w ∈ Rn+1 lies in the interior of a maximal
cell σ in ΣTrop(g) we have CI [w] = σ.

Proof. We have to prove that w′ ∈ Rn+1 lies in the interior of the maximal cell σ if and only if
inw′(I) = inw(I). For proving this we will use that if we denote by ΣTrop(gd) also the coarsest
polyhedral complex in which Trop(gd) is linear then Trop(g) is the common refinement of the
Trop(gd). So if σd is the maximal cell in Trop(gd) containing σ it’s enough to prove that for all
w ∈ Rn+1 and for all d ≤ D.

w′ ∈ int(σd) ⇐⇒ inw′(I)d = inw(I)d (3.6)

Let us prove the equivalence (3.6). Take w′ ∈ in(σd). As w and w′ lye in the maximal
same cell of σd the minimum of Trop(gd) is achieved in only one term and this term is the same
for w and w′. This term of Tropgd is indexed for some J ⊂ Md. Now apply Lemma 3.2.14
to the matrix Ad and the vector w̃ ∈ R|Md| such that w̃u = w · u. We get an (r × |Md|)-
matrix B with BJ the identity and val(Buv) + w · v > w · u for xu ∈ J, xv /∈ J . The inequal-
ity is strict because the minimum is achieved only once. The rows of B represent polynomials
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f̃u = xu +
∑
xv /∈J Buvx

v indexed by xu ∈ J . Then the inequality translate in intw(f̃u) = xu so
xu ∈ inw(f̃u) = xu. As dimK(I)d = dimk(inw(I))d we get (inw(I))d = 〈J〉. Analogously we have
(inw′(I))d = 〈xu | xu ∈ J〉 so we conclude (inw′(I))d = (inw′(I))d.

Now for the reverse implication suppose w′ /∈ int(σd). This means that there is J ′ ∈
(Md

r

)
diferent from J such that Trop(gd) is minimized in the term of gd indexed by J ′. That is

val(AJ
′

d ) +
∑
xu∈J

w′ · u ≤ val(AJ
′′

d ) +
∑
xu∈J′′

w′ · u ∀J ′′ ∈
(
M
r

)
We can take take J ′ such that it index a vertex of the polytope

conv(
∑
xu∈J′′

u | val(AJ
′′

d ) +
∑
xu∈J′′

w′ · u) is minimal

Hence there is v ∈ Rn+1 with v ·′
∑
xu∈J′ u < v ·

∑
xu∈J′′ u for all J ′′ ∈

(|Md|
r

)
\ {J ′} and then

∀ε > 0 we have

val(AJ
′′

d ) +
∑
xu∈J′

(w′ + εv) · u < val(AJ
′′

d ) +
∑
xu∈J′′

(w′ + εv) · u

So Trop(gd)(w
′ + εv) attains its minimum uniquely. Then by the result we get at the end of the

"only if" part we get inw′+εv(I)d = span{xu | xu ∈ J ′} but as inw′+εv(I) = inv(inw′(I)) we get
that inw′(I)d cannot be the span of the monomials in J and so inw′(I)d 6= inw(I)d as we wanted.

Now we are ready to prove that CI [w] fit together in a polyhedral complex.

Theorem 3.2.16. The polyhedra CI [w] as w varies over Rn+1 form a Γval-rational polyhedral
complex in Rn+1.

Proof. By Lemma 3.2.15 all top dimensional cells of the polyhedral complex ΣTrop(g) are of the
form CI [w] for some w with inw(I) a monomial ideal. In the other hand if w is such that inw(I) is
a monomial ideal then inw(I) = inv(inw(I)) = inw+εv(I) for any v and small ε, so CI [w] is open
and then CI [w] is a maximal cell. For this reason the set {CI [w] | inw(I) is a monomial ideal} is
exactly the set of maximal cells of ΣTrop(g). If inw(I) is not a monomial ideal then by Lemma
3.2.12 CI [w] is a face of some CI [w′] with inw′(I) a monomial ideal and so the polyhedral complex
is exactly ΣTrop(g).

The polyhedral complex in this theorem is denoted by Σ(I) and is called the Gröbner complex
of the homogeneous ideal I.

3.2.4 Gröbner Basis for Laurent Ideals
Finally let us say that the definitions of initial form and initial ideal can be extended to the ring
of Laurent polynomials K[x±1

1 , . . . , x±nn ] by using the same definitions as for the usual ring of
polynomials K[x0, . . . , xn]. That is, given f ∈ K[x±1

1 , . . . , x±nn ] and w ∈ Rn we define

inw(f) =
∑

u such that
val(cu)+w·u=W

cut−val(cu) · xu ∈ k[x±1
1 , . . . , x±1

n ]

and for an ideal I ⊆ K[x±1
1 , . . . , x±1

n ] we define inw(I) = {inw(f) | f ∈ I} ⊆ k[x±1
1 , . . . , x±1

n ].

Now given a Laurent ideal I ⊆ K[x±1 , . . . , x
±
n ] we define its homogenization as the ideal Iproj ⊆

K[x0, . . . , xn] generated by all the polynomials

f̃ = xm0 · f(
x1

x0
, . . . ,

xn
x0

)

as f varies over I and where m is the smallest integer that clear all denominators.

We can compute the initial ideal of a Laurent ideal through the initial ideal of its homogeniza-
tion.
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Proposition 3.2.17. Let I ⊆ K[x±1
1 , . . . , x±1

n ] be an ideal and fix w ∈ Rn. Then inw(I) is
generated by the image of in(0,w)(Iproj) in k[x±1

1 , . . . , x±1
n ] obtained by setting x0 = 1. Also every

element f ∈ inw(I) has the form f = xug|x0=1 for some g ∈ in(0,w)(Iproj).

Proof. For f =
∑
cu
xu ∈ I ∩ K[x1, . . . , xn] its homogenization is f̃ =

∑
cux

uxju0 where ju =
(maxcv 6=0 |v|)− |u|. Then as

W = Trop(f)(w) = min(val(cu) + w · u) = min(val(cu) + (0,w) · (ju, 0)) = Trop(f̃)(0,w)

We get in(0,w)(f̃) =
∑

val(cu)+w·u=W cut−val(cu)xuxju0 and therefore in(0,w)(f̃)|x0=1 = inw(f).

After multiplying for monomials if necessary we can choose f1, . . . , fs ∈ K[x1, . . . , xn] ∩ I such
that inw(I) = 〈inw(f1), . . . , inw(fs)〉. Then inw(I) ⊆ in(0,w)(Iproj)|x0=1 as inw(f̃i)|x0=1 = inw(fi).
In the other sense taking a homogeneous basis 〈g1, . . . , gr〉 = Iproj ⊆ K[x0, . . . , xn] we can
write each gi as xji0 f̃i for some j where f̃i is the homogenization of fi(x) = g(1, x). Then
inw(fi) = in(0,w)(f̃i)|x0=1 = in(0,w)(g̃i)|x0=1 so in(0,w)(Iproj)|x0=1 ⊆ inw(I).

Finally if f ∈ inw(I) by Proposition 3.2.6 we have f = inh for h ∈ I, then taking u ∈ Zn with
xuh ∈ inw(I) ∩K[x1, . . . , xn] we have in(0,w)( ˜xuh) = inw(xuh) = xuf so taking g = in(0,w)(h̃) we
conclude.

3.3 Tropicalization of Algebraic Varieties
The connection of tropical geometry with algebraic geometry is given by the process of tropical-
ization of a variety defined over a field with a valuation. Here we introduce this process and use it
to define general tropical variety. Then we prove that these tropical varieties are the support of a
pure Γval-rational polyhedral complex.

We will denote by TnK the torus GnK along this sections and the next one.

Definition 3.3.1. Let K be a field with a valuation and not necessarily algebraically closed.

1. Given a Laurent polynomial f =
∑

u∈Zn cux
u ∈ K[x±1 , . . . , x

±1
n ] its tropicalization is the

tropical polynomial given by

Trop(f) =
⊕
u∈Zn

val(cu)� xu

or in terms of functions

Trop(f)(w) = min{val(cu) + w · u | u ∈ Zn and cu 6= 0}

2. A closed subvariaty X ⊆ TnK is detemined by an ideal I ⊆ K[x±1
1 , . . . , x±1

n ]. We define its
tropicalization as the set

Trop(X) =
⋂
f∈I

V (Trop(f))

where we are using equation (3.1) to interpret V (Trop(f)).

3. A tropical variety in Rn will be any subset of the form Trop(X) for some subvariety X of a
torus T .

�

Remark 3.3.2.

• In order to compute
⋂
f∈I V (Trop(f)) is not enough to consider only generators of the ideal I

because intersections does not commute with tropicalization. For that reasons an intersection
of finitely many tropical hypersurfaces is not necessarily a tropical variety. A set of generators
T = {f1, . . . , fN} ⊆ I such that

Trop(V (I)) =
⋂
f∈T

V (Trop(f))

is called a tropical basis of I. Every ideal has a tropical basis (see [MS15] Theorem 2.6.6).

59



• As any tropical polynomial can be written as the tropicalization of a usual polynomial over
a valued field, and as Trop(V (f)) = V (Trop(f)) we see that any tropical hypersurface
as defined in section 3.1 is a tropical variety as defined here. Also we have Newt(f) =
Newt(Trop(f)).

�

There are different ways of computing the tropicalization of an algebraic variety. These are
summarized in the next result that can be found in [MS15] Theorem 3.2.3.

Theorem 3.3.3 (Fundamental Theorem of Tropical Algebraic Geometry). Let K algebraically
closed field with a nontrivial valuation and let X be a subvariety of the algebraic torus TnK . Then
the following three subsets of Rn coincide:

• Trop(X)

• the set of vectors w ∈ Rn with inw(I) 6= (1) where X = V (I) for some ideal I ⊆ K[x±1
1 , . . . , x±1

n ]

• the closure of the set of coordinatewise valuations of points in X

val(X) = {(val(y1), . . . , val(yn)) | (y1, . . . , yn) ∈ X}

Furthemore, if X is irreducible and w is any point in Γnval then the set {y ∈ X | val(y) = w} is
Zariski dense in the classical variety X

Remark 3.3.4. Given any field extension K ′ | K and an ideal I ⊆ K[x1, . . . , xn], one can always
take a tropical basis of IK ′[x1, . . . , xn] composed of only polynomials defined over K (see [MS15]
Lemma 2.6.5). Hence, passing to a field extension does not change the tropical variety associated.
Then if K is not algebraically closed we may pass to its algebraic closure K̄ with an extension of
its valuation or if the valuation is trivial we can pass to the field of Puiseux series K{{t}}. �

The objective of this chapter is to prove the following structure theorem.

Theorem 3.3.5 (Structure Theorem for Tropical Varieties). Let X be an irreducible d-dimensional
subvariety of the torus TnK . Then Trop(X) is the support of a weighted Γval-rational polyhedral
complex of pure dimension d satisfying the balancing condition.

We will devote the rest of this section to prove the first part of this theorem. Theorem 3.3.6
below deal with the fact that Trop(X) is the support of a rational polyhedral complex and Theo-
rem 3.3.14 below show that this polyhedral complex is of pure dimension.

Theorem 3.3.6. For any subvariety of the torus X the set Trop(X) is the support of a Γval-rational
polyhedral complex.

Proof. Let X = V (I) with I ⊆ K[x±1
1 , . . . , x±1

n ]. By Theorem 3.3.3 the underlying set of Trop(X)
is equal to {w ∈ Rn | inw(I) 6= 〈1〉}. By Proposition 3.2.17 we have inw(I) = 〈1〉 if and only if
1 ∈ in(0,w)(Iproj)|x0=1 and this happens if and only if there is a polynomial in x0 times a monomial
in x1, . . . , xn inside int(w,0)(Iproj) but as int(w,0)(Iproj) is homogeneous this is the happens if and
only if it contains a monomial.

Hence Trop(X) is the set of w for which in(w,0)(Iproj) does not contain a monomial. This is a
union of cells in the Gröbner complex Σ(Iproj) constructed in 3.2.16. Also the set of w for which
in(w,0)(Iproj) contains a monomial is open because by Lemma 3.2.11 if inw(I) contains a monomial,
also inv(inw(I)) = inw+εv(I) contains a monomial for small ε. Hence Trop(X) is closed and then
is a subcomplex of the Gröbner complex Σ(Iproj).

Remark 3.3.7. Given a subvariety X ⊆ TnK with ideal I ⊆ K[x±1
1 , . . . , x±1

n ] there are more than
one possible polyhedral complexes Σ such that Trop(X) = |Σ|. The proof of the proposition above
tell us that there is always one such that for every σ ∈ Σ we have that inw(I) is constant for all
w ∈ int(σ) and between all these the construction above give us the coarsest one. �

As an application of the things developed here we can understand the tropical variety defined
by the initial ideals inw(I) in terms of the tropical variety defined by I.
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Proposition 3.3.8. Let I be an ideal in K[x±1
1 , . . . , x±1

n ] and let Σ be a polyhedral complex with
support Trop(V (I)). Then for any σ ∈ Σ we have

starΣ(σ) = Trop(V (inw(I)))

where w is in the relative interior of σ. In particular starΣ(σ) is a tropical variety.

Proof.

Trop(V (inw(I))) ={v ∈ Rn | inv(inw(I)) 6= 〈1〉}
={v ∈ Rn | inw+εv(I) 6= 〈1〉 for small ε}
={v ∈ Rn | w + εv ∈ Σ for small ε}
= starΣ(σ)

Where we use Theorem 3.3.3 in the first equality, Corollary 3.2.11 in the second equality, then
Theorem 3.3.3 again and finally the definition of the star of a polyhedral complex.

3.3.1 Monomial maps and change of coordinates
Now we will prove that this polyhedral complexes have pure dimension. For this we will need some
change of coordinates on the variety defined by I in order to simplify the problems. The natural
change of coordinates for a variety inside a torus are given by monomial maps.

A monomial map is an algebraic homomorphism between two tori. From Proposition 1.1.1 we
have

Homalg. groups(T
n
K , T

m
K ) ∼=

n,m⊕
i,j=1

Hom(Gm,K ,Gm,K) ∼=
n,m⊕
i,j=1

Z = Mat(m× n,Z)

In concrete terms the map attached to a matrix (αi,j)i,j ∈ Mat(m× n,Z) is given by

(x1, . . . , xn) 7→ (x
α1,1

1 x
α1,2

2 · · ·xα1,n
n , . . . , x

αm,1
1 x

αm,2
2 · · ·xαm,nn )

One also have a notion of tropicalization for monomial maps: Given the monomial map ϕ :
TnK → TmK it induced a map between the coordinate rings ϕ∗ : K[x±1

1 , . . . , x±1
m ]→ K[x±1

1 , . . . , x±1
n ]

and this map correspond to a group homomorphism ϕ′ : Zm → Zn.
We define the tropicalization of ϕ as the map

Trop(ϕ) := ϕ′ ⊗Z R : Rm → Rn

If ϕ∗(xi) = zai then Trop(ϕ) is represented by AT where A is the matrix with ith column
equals ai.

With this concept we can state the following results.

Proposition 3.3.9.

1. Let ϕ : TnK → TmK be a monomial map. Let I ⊆ K[x±1
1 , . . . , x±n ] be an ideal and let I ′ =

ϕ∗−1(I). Then for all w ∈ Rn

ϕ∗(inTrop(ϕ)(w)(I
′)) ⊆ inw(I)

In particular if inw(I) 6= 〈1〉 we also have inTrop(ϕ)(w)(I
′) 6= 〈1〉 and if φ is a monomial

automorphism
inw(I) 6= 〈1〉 ⇐⇒ inTrop(ϕ)(w)(I

′) 6= 〈1〉

2. Let ϕ : TnK → TmK be a monomial map. Consider any subvariety X of TnK and the zariski
closure ϕ(X) of its image in TmK . Then

Trop(ϕ(X)) = Trop(ϕ)(Trop(X))

Proof.
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1. Let us denote the coordinates in Tm by xi and in Tn by zm and suppose ϕ∗(xi) = zai where
ai ∈ Zn. Then ϕ∗(xu) = zAu where A is the matrix with ith column equals ai. Now if
f =

∑
cux

u we have ϕ∗(f) =
∑
cuz

Au ∈ I so

W = Trop(f)(ATw) = min
u

(val(cu) + w ·Au) = Trop(ϕ∗(f))(w)

and then

ϕ∗(inTrop(ϕ)(w)(f)) = ϕ∗

 ∑
val(cu)+w·Au=W

t−val(cu)cu · xu


=
∑

val(cu)+w·Au=W

t−val(cu)cu · xAu

= inw(ϕ∗(f))

and from this ϕ∗(inTrop(ϕ)(w)(I
′)) ⊆ inw(I) as we wanted. The following part of the lemma

follows easily from this.

2. Let I be the ideal of X and I ′ := (ϕ∗)−1(I) the ideal of ϕ(X). By part 1 above if we
have inw(I) 6= 〈1〉 then we have inTrop(ϕ)(w)(I

′) 6= 〈1〉 and this shows Trop(ϕ)(Trop(X)) ⊆
Trop(ϕ(X)).

For the converse by Theorem 3.3.3 we have that Trop(ϕ(X)) = cl({val(z) | z ∈ ϕ(X)}) where
cl(·) denotes the topological closure. Since Trop(ϕ)(Trop(X)) is already closed we just have
to prove that

Γmval ∩ Trop(ϕ(X)) ⊆ Trop(ϕ)(Trop(X))

so let w in the left-hand side of this. By Theorem 3.3.3 the set of z ∈ ϕ(X) for which
val(z) = w is Zariski dense in ϕ(X) so there is y in X such that if ϕ(y) = z then val(z) = w.
As val(ϕ)(y) = Trop(ϕ)(val(y)) we get w ∈ Trop(ϕ)(Trop(X)).

We can construct some interesting monomial maps using the following result from linear algebra.

Lemma 3.3.10. If L is a rank k subgroup of Zn such that Zn/L is torsion-free, then there is a
matrix U ∈ GL(n,Z) with U(L) = 〈e1, . . . , ek〉. In particular for any primitive vector v ∈ Zn there
is a matrix U ∈ GL(n,Z) such that Uv = e1.

Proof. As L = 〈v〉 has torsion-free quotient Zn/L exactly when v is primitive we see the last part
follows from the first.

Now given L consider the k × n matrix A with column vectors given by an integral basis of L.
The Smith normal of A is a matrix A′ with its first k× k block diagonal and such that A′ = SAT
for some S ∈ GL(n,Z), T ∈ GL(k,Z). As Z/L is torsion free we have that the first block of A′ is
actually the identity and so the rows of A′ span the vector subspace 〈e1, . . . , ek〉. Then the rows
of AT also span this vector subspace and so we can take U = TT .

3.3.2 Dimension of tropical varieties
Now we deal with the dimension part of Theorem 3.3.5.

We start by proving that given a X ⊆ TnK andm ≤ dim(X) there is a projection map TmK → TnK
with nice behaviour and preserving the dimension of X.

Proposition 3.3.11. Fix a subvariety X in TnK and m ≤ dim(X). There is a monomial morphism
π : TnK → TmK such that π(X) is closed and dim(π(X)) = dim(X).

Proof. As composition of maps with this properties have this properties we just deal with the
case n = m + 1. Let I be the ideal defining X. Consider the monomial change of coordinates
ϕ : TnK → TmK defined by ϕ∗l (x1) = x1x

ln−1

n , ϕ∗l (x2) = x2x
ln−2

n , . . . ϕ∗l (xn) = xn. For any fixed
f ∈ I, taking l large enough we have that the Laurent polynomial

ϕ∗l (f) = f(x1x
ln−1

n , x2x
ln−2

n , . . . , xn)
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have all its monomials with different degree in xn. As ϕ∗l is invertible, after replacing I with ϕ∗l (I),
we can suppose that I is generated by a set of polynomials satisfying this property. After this
the map π : TnK → Tn−1

K given by the projection onto the first n− 1 coordinates have the desired
properties:

• We have π(X) = V (I ∩ k[x±1
1 , . . . , x±1

n−1]) and the difference π(X) \ π(X) is contained in
the variety defined by the leading coefficients of polynomials in a set of generator of I when
viewed as polynomials in xn. As these leading coefficients are taking to be monomials in
x1, . . . , xn−1 we conclude that π(X) \ π(X) = so π(X) is closed.

• To see dim(X) = dim(π(X)) is enough to show that K[π(X)] is a finite extension of K[X],
as then they have the same trascendence degree over K. For this notice that I contains a
monic in xn with coefficients in x1, . . . , xn−1 and hence xn is integral over K[π(X)].

Using this we can prove the following result about zero dimensional tropical varieties.

Lemma 3.3.12. Let X be a subvariety of the algebraic torus TnK . If the tropical variety Trop(X)
is a finite set of points in Rn, then X is a finite set of points in T .

Proof. Let’s do induction on n. For n = 1 every proper subvariety of T 1
K is finite and TropT 1

K) = R
so the statement is clear.

For n ≥ 2 we can suppose X is not a hypersurface because in that case Proposition 3.1.3
says that Trop(X) is not finite. As every codimension 1 subvariety of an affine variety with co-
ordinate ring UFD (in particular of a torus) is a hypersurface we can assume dim(X) ≤ n − 2.
Now using Proposition 3.3.11 choose a map π : TnK → Tn−1

K with Y := π(X) = π(X). Changing
coordinates we assume that π is the projection onto the first n − 1 coordinates. By part 2 of
Proposition 3.3.9 above we have that Trop(Y ) is finite and then by induction Y is finite. Let
Y = {y1, . . . , yr} ⊂ Tn−1

K . As we can assume λen /∈ Trop(X) for λ � 0, the ideal I of X need to
contain at least one polynomial of the form 1 +

∑s
i=1 fix

i
n with fi ∈ K[x±1

1 , . . . , x±1
n−1]. Then each

π−1(yi) can have at most s elements and so X is also finite.

Now we will use the lemma above plus the following result about commutative algebra to
finished the proove

Lemma 3.3.13. Suppose K is algebraically closed and its valution is non trivial. Let I ⊆
K[x±1

1 , . . . , x±1
n ] be a prime ideal of dimension d and fix w with inw(I) 6= 〈1〉. Then inw(I)

has pure dimension d in the sense that every minimal prime ideal of it has dimension d.

Proof. We will start proving that for every homogeneous prime ideal J ⊆ K[x0, . . . , xn] and
w ∈ Rn+1 the initial ideal inw(J) has pure dimension d. By the hypothesis over K we have
that Γval is dense in R, thus the cell containing w in the Gröbner complex Σ(J) contains a point
w′ ∈ Γnval and hence we can assume w ∈ Γnval. Also by Proposition 3.2.10 the dimension of inw(J)
is d and hence any minimal prime of the initial ideal has dimension at most d. We will prove the
converse now.

As w ∈ Γn+1
val we may use a change of coordinates given by ϕ∗(xi) = twixi for all i, and as

inw(J) = in0(ϕ∗(J)) we can suppose w = 0. Now let {g1, . . . , gs} be a Gröbner basis. After
multiplying by tci for some big ci we can suppose gi ∈ R[x0, . . . , xn] where R is the valution ring
of K and ḡi 6= 0 for all i.

We consider a Noetherian subring R′ of R in which the ideal J is defined. It will be constructed
as follows. Let R̃ be the subring of R generated by the coefficients of all the gi and let m̃ = mK ∩R̃.
Then R′ is the localization of R̃ with respect to m̃. As R′ is a localization of a finitely generated
ring it is Noetherian. We denote by K ′ the fraction field of R′, by m′ = R′m̃ the maximal ideal of
R′ and by k′ = R′/m′ the subfield of k.

Let c = dim(R′). By the converse of Krull’s principal ideal theorem (see [Eis95], Corollary
10.5) there are a1, . . . , ac ∈ m′ for which m′ is minimal over 〈a1, . . . , ac〉. Since m′ is the only
maximal ideal in R′, any other prime ideal containing 〈a1, . . . , ac〉 is equal to m′. Also let J ′ =
J ∩R′[x0, . . . , xn] and J ′′ = J ∩K ′[x0, . . . , xn]. As J = J ′′ ⊗K′ K we get (K ′[x0, . . . , xn]/J ′′)⊗K′
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K ∼= K[x0, . . . , xn]/J ⊗K′ K and then dim(K[x0, . . . , xn]/J) = dim(K ′[x0, . . . , xn]/J ′′). Moreover
dim(R′[x0, . . . , xn]/J ′) = d+ c using Theorem 13.8 in [Eis95] with Q = 〈x0, . . . , xn〉+ m′.

Now consider P a minimal prime ideal of J ′+m′ inside R′[x0, . . . , xn]. As any prime containing
〈a1, . . . , ac〉 contains m′ we have that P is also a minimal prime for J ′ + 〈a1, . . . , ac〉. Thus, the
codimension of P/J ′ in R′[x0, . . . , xn]/J ′ is at most c, and hence the dimension of P is at least d.
This implies that all minimal primes of (J ′ + m′)/m′ has dimension at least d (as they are of the
form P/m′), so to conclude it’s enough to show

(J ′ + m′)/m′ ⊗k′ k = in0(J)

Each gi in the Gröbner basis lies inR′[x0, . . . , xn] by construction and its image ḡi in k′[x0, . . . , xn]
is equal to in0(gi). Hence, in0(J) ⊆ (J ′+m′)/m′⊗k′ k. For the other inclusion we just notice that
in0(f) = 〈f̄ | f ∈ I〉 and each f̄ is contained in the other side. This end this part of the proof.

Now return to the hypothesis of the problem. The ideal Iproj ⊆ K[x0, . . . , xn] is prime of di-
mension d+1, so because of what we did above every minimal prime of in(0,w)(Iproj) has dimension
d+ 1. By Krull’s principal ideal theorem all minimal prime ideals of in(0,w)(Iproj) + 〈x0 − 1〉 have
dimension at least d. But in the other hand all minimal prime ideals of in(0,w)(Iproj) + 〈x0 − 1〉
are homogeneous (because the initial ideal is homogeneous) and then contained in 〈x0, . . . , xd〉.
Thus, the minimal primes of in(0,w)(Iproj) + 〈x0− 1〉 have dimension exactly d. Then by 3.2.17 we
have inw(I) = in(0,w)(Iproj)|x0=1. So, the minimal primes of inw(I) are the images of the minimal
prime over in(0,w)(Iproj)+ 〈x0−1〉 that do not contain any monomial x1, . . . , xn. Hence, they have
dimension d.

Using this we can study the dimension of tropical varieties.

Theorem 3.3.14. Let X be an irreducible subvariety given by an ideal I ⊂ K[x±1
1 , . . . , x±1

n ] of
dimension d in the algebraic torus TnK . Then every Γval-rational polyhedral complex with support
Trop(X) has pure dimension d.

Proof. As having pure dimension d only depend in the support of the polyhedral complex it’s
enough to prove that the polyhedral complex Σ constructed in Theorem 3.3.6 has pure dimension
d.

Let’s prove first that each cell has dimension at most d. Recall from the construction of Σ that it
is given by the cells in the Gröbner complex Σ(Iproj) contained in the set {w ∈ Rn | inw(I) 6= 〈1〉}.
Now let w ∈ Γnval lying in the relative interior of a maximal cell σ ∈ Σ. The affine span of σ is
w + L, where L is a subspace of Rn. By Lemma 3.3.10 and part 1 of Proposition 3.3.9 we may
assume that L is the span of e1, . . . , ek for k is the dimension of the cell σ. We need to show
that k ≤ d. Since w lies in the relative interior of σ we have inw+εv(I) 6= 〈1〉 for all v ∈ Zn ∩ L
and ε small enough. Lemma 3.2.7 and Proposition 3.2.17 imply inv(inw(I)) = inw(I) for all
v ∈ L ∩ Zn. Choose a set G of generators for inw(I) so that no generator is the sum of two other
polynomials in inw(I) having fewer monomials. In particular we have inei(f) = f for 1 ≤ i ≤ k, so
f = mf̃ where m is a monomial, and x1, . . . , xk do not appear in f̃ . Since monomials are units in
k[x±1

1 , . . . , x±1
n ], this means that inw(I) is generated by elements not containing x1, . . . , xk. Hence

k ≤ dim(inw(I)) ≤ dim(X) = d as we wanted.

Now let’s prove that each maximal cell σ in Σ has dimension at least d. Fix w ∈ int(σ)
and suppose that dim(σ) = k. By Lemma 3.3.8 we have |starΣ(σ)| = Trop(V (inw(I))) and as
σ is a maximal cell this is the linear space parallel to σ. After a change of coordinates using
part 2 of Proposition 3.3.9 we can assuma that L is generated by e1, . . . , ek. Since inv(inw(I)) =
inw+εv(I) = inw(I) for all v ∈ L and small ε we get inei(inw(I)) = inw(I) and so the initial ideal
is homogeneous with respect to the grading given by deg(xi) = ei for 1 ≤ i ≤ k and deg(xi) = 0
for i > k. Hence inw(I) is generated by Laurent polynomials using only the variables xk+1, . . . , xn.
In particular

dim(inw(I)) ≤ k + dim(inw(I) ∩ k[x±1
k+1, . . . , x

±1
n ])

Now let J = inw(I) ∩ k[x±1
k+1, . . . , x

±1
n ]. If we have Trop(V (J)) = {0} we are done because by

Lemma 3.3.12 then V (J) is finite and so dim(itw(I)) ≤ k but then by Lemma 3.3.13 we known
that dim(inw(I)) = d and hence k = dim(σ) ≥ d.
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3.3.3 Transversal Intersection of Tropical Varieties
We finished this section by studying a result related to transverse intersection of tropical varieties
will take an important role in the proof of the balancing condition in the next section.

Definition 3.3.15. Let Σ1 and Σ2 be two polyhedral complexes in Rn and w ∈ |Σ1|∩|Σ2|. As the
relative interior of the cells partition the polyhedron complex we have that w is in the interior of a
unique cell σi in Σi for i = 1, 2. The complexes Σ1 and Σ2 intersect transversaly at w if the affine
span of σ1 and the affine spane of σ2 generate Rn as affine spaces. Two tropical varieties Trop(x)
and Trop(Y ) intersect transversaly at w if for some choice Σ1, Σ2 of Polyhedral complex structures
such that Trop(x) = |Σ1| and Trop(Y ) = |Σ2| we have that Σ1 and Σ2 intersect transversaly at
w. �

The result we want to prove will use the following lemma.

Lemma 3.3.16. Let I, J be homogeneous ideals in K[x0, . . . , xn, y0, . . . , ym] and fix w ∈ Rn+m+2.
If inw(I) has a generating set only involving x0, . . . , xn and inw(J) has a generating set only
involving y0, . . . , ym then

inw(I + J) = inw(I) + inw(J)

Proof. The inclusion ⊇ is obvious so by contradiction if the equality does not happen then we
can find some homogeneous polynomial f + g in I + J of degree d with f ∈ Id, g ∈ Jd and
inw(f + g) /∈ inw(I) + inw(J). Now fix a monomial order ≺ in k[x0, . . . , xn, y0, . . . , yn] such that
in≺(inw(f + g)) /∈ in≺(inw(I) + inw(I)). In particular

in≺(inw(f + g)) /∈ in≺(inw(I)) + in≺(inw(I)) (3.7)

Let xu1yv1 and xu2yv2 be the monomials in in≺(inw(f)) and in≺(inw(g)) and call α1, α2 ∈ K the
coefficients of these monomials in f and g respectively. From 3.7 we get xu1yv1 = xu2yv2 (i.e,
u1 = u2 and v1 = v2) and val(α1 + α2) > val(α1) = val(α2).

We assume that this counterexample is maximal in the following sense: if f ′ ∈ Id, g′ ∈ Jd is any
other pair with f+g = f ′+g′, then either Trop(f ′)(w) < Trop(f)(w) or Trop(f ′)(w) = Trop(f)(w)
and in≺(inw(f ′)) � in≺(inw(f)). But first we must prove that such a maximal pair need to ex-
ist. For this suppose there were no such pair, then we could find a sequence fi = f + hi ∈ I,
gi = g − hi ∈ J with fi + gi = f + g for all i and Trop(fi)(w) strictly increasing. The strictly
increasing part is because if Trop(fi)(w) = Trop(fi+1)(w) then the sequence must stop because
there are only finitely many candidates for the monomial in≺(inw(f ′)).

By passing to a subsequence we may assume that the support of each fi (the set of monomials
appearing in fi) is the same. Since supp(fi + hi) = supp(f + hi+1), there are α, β ∈ K∗ for
which α(f + hi) + β(f + hi+1) = (α + β)f + (αhi + βhi+1) has strictly smaller support. Since
f+hi 6= f+hi+1 we may assume that one of the monomials removed from supp(f+hi) in this man-
ner has different coefficients in hi and hi+1, and thus α+β 6= 0. Note that for any two polynomials
p1, p2 we have Trop(p1 + p2)(w) ≥ min(Trop(p1)(w),Trop(p2)(w)). Since fi − f = g − gi ∈ I ∩ J
for all i the resulting polynomial h′i = (αhi+1 +βhi)/(α+β) is also in I ∩J , so f ′i = f +h′ lies in I
and has Trop(f ′i)(w) ≥ Trop(fi)(w) and supp(f ′i) ( supp(fi). By passing to another subsequence
we may assume that the sequence Trop(f + h′i)(w) is again increasing. contuining to iterate this
procedure would eventually yield the support of the new fi being empty which is impossible since
∈w (fi + gi) 6= inw(J). This shows that the infinite increasing sequence does not exist, so we may
assume that the pair f , g is maximal in the required sence.

Now f ∈ I implies that xu1yv1 ∈ in≺(inw(I)), so there is f1 ∈ I with inw(f1) ∈ k[x0, . . . , xn],
and in≺(inw(f1)) = xu3 dividing xu1 . We may assume that the coefficient of xu3 in f1 is one so we
can write f = α1x

u1−u3yv1f1 + f2 where Trop(f2)(w) ≥ Trop(f)(w), and if equality holds, then
in≺(inw(f2)) ≺ in≺(inw(f)). Similarly, g = α2x

u1yv1−v3g1 +g2 where Trop(g2)(w) ≥ Trop(g)(w),
and if equality holds, then in≺(inw(g2)) ≺ in≺(inw(g)). Since val(α1 + α2) > val(α1) = val(α2),
we can write α2 = α1(−1 + β) with val(β) > 0. Then

f + g = α1x
u1−u3yv1f1 + f2 + α2x

u1yv1−v3g1 + g2

= α1x
u1−u3yv1−v3(yv3f1 − xu3g1 + βxu3g1) + f2 + g2

= α1x
u1−u3yv1−v3(−(g1 − yv3)f1 + (f1 − xu3)g1 + βxu3g1) + f2 + g2
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Setting

f ′ = α1x
u1−u3yv1−v3(−(g1 − yv3)f1) + f2

g′ = α1x
u1−u3yv1−v3((f1 − xu3)g1 + βxu3g1) + g2

then by construction f ′ ∈ I, g′ ∈ J , and f ′ + g′ = f + g. In addition, either Trop(f ′)(w) >
Trop(f)(w) or in≺(inw(f ′)) ≺ in≺(inw(f)). This contradicts the maximality of our counterexam-
ple, so we conclude that none exists and hence inw(I + J) = inw(I) + inw(J).

Theorem 3.3.17. Let X and Y be subvarieties of TnK . If Trop(X) and Trop(Y ) meet transversaly
at w ∈ Γnval, then w ∈ Trop(X ∩ Y ). Therefore

Trop(X ∩ Y ) = Trop(X) ∩ Trop(Y )

if the intersection is transversal everywhere.

Proof. Let Σ1, Σ2 be polyhedral complexes in Rn with support Trop(X) and Trop(Y ) respectively
and let I and J be the ideals defining X and Y . Let σi ∈ Σi be the cell containing w in its relative
interior for i = 1, 2. Our hypothesis says that if the affine span of σi is w+Li then L1 +L2 = Rn.

We can reduce to the case in which L1 contains e1, . . . , er, er+1, . . . , es and L2 contains e1, . . . , er,
es+1, . . . , en. To see this notice that as L1 + L2 = R there is a basis a1, . . . , an ∈ Rn such that
a1, . . . ar ∈ L1 ∩L2, ar+1, . . . , as ∈ L and as+1, . . . , an ∈ L2 and all ai ∈ Zn. If we put this vectors
as rows of an n × n matrix A and let ϕ : Tn → Tn be the monomial map given by ϕ(xi) = xai

then Trop(ϕ) is given by AT and it is an isomorphism as A has full rank (even though ϕ(A) is not
an isomorphism unless |det(A)| = 1). Let I ′ =′ varphi∗(I), J ′ =′ varphi∗(J), X ′ = V (I ′) and
Y ′ = V (J ′). Then ϕ(X ′) = X and ϕ(Y ′) = Y . By part 2 of Proposition 3.3.9 we have

Trop(X) = Trop(ϕ)(Trop(X ′))

Trop(Y ) = Trop(ϕ)(Trop(Y ′))

Trop(X ∩ Y ) = Trop(ϕ)(Trop(X ′ ∩ Y ′))

By construction we have

Trop(ϕ)(span(er+1, . . . , es)) ⊆ L1

Trop(ϕ)(span(es+1, . . . , en)) ⊆ L2

Trop(ϕ)(span(e1, . . . , er)) ⊆ L1 ∩ L2

and Trop(X ′) and Trop(Y ′) intersect transversely at Trop(ϕ)−1(w). So we have reduced the
problem to show Trop(ϕ)(w) ∈ Trop(X ′∩Y ′). Replacing X and Y with X ′ and Y ′ we can assume
what we wanted over L1, L2.

As w ∈ int(σ1) we have for every v ∈ L1 that w + εv ∈ σ for small ε. Hence inw+εv(I) =
inv(inw(I)) = inw(I) and we get that inw(I) is homogeneous with respect to a graduation given
by deg xi = ei for i ∈ {1, . . . , r, r + 1, . . . , s} and deg xi = 0 for other i. Then we can find polyno-
mials f1, . . . , fl in the variables xs+1, . . . , xn that generate inw(I). Similarly there are generators
g1, . . . , gm for inw(J) depending only in the variables xr+1, . . . , xs. Let Iproj ⊆ K[x0, . . . , xn+1] be
the ideal obtained by homogenizing I ∩K[x1, . . . , xn] using the variable xn+1, and let Jproj be the
ideal obtained by homogenizing J ∩K[x1, . . . , xn] using the variable x0.

For w = (0,w, 0) ∈ Rn+2 the initial ideal inw(Iproj) has a generating set only using xs, . . . , xn+1

and inw(Jproj) has a generating set only using x0, xr+1, . . . , xs. Thus by Lemma 3.3.16 we have
inw(Iproj + Jproj) = inw(Iproj) + inw(Jproj) and by Proposition 3.2.17 if we set x0 = xn+1 = 1 we
get

inw(I + J) = inw(I) + inw(J)

since inw(I) and inw(J) are proper ideals, by the Nullstellenatz there exist y = (yr+1, . . . , ys) ∈
(k∗)s−r and z = (zs+1, . . . , zn) ∈ (k∗)n−s with fi(y) = gj(z) = 0 for all i, j. Now, for any
(t1, . . . , tr) ∈ (k∗)r, the vector (t1, . . . , tr, yr+1, . . . , ys, zs+1, . . . , zn) lies in the variety V (inw(I)) ∩
V (inw(J)) = V (inw(I+J)). We conclude that inw(I+J) 6= 〈1〉, and hence w ∈ Trop(V (I+J)) =
Trop(X ∩ Y ).
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3.4 Weights of Cells and Balancing Condition
In this section we introduce weights for the maximal cells of an arbitrary tropical variety. We show
that this weights coincide with the lattice length of the the dual edges used for tropical hypersur-
faces and then we prove the balancing condition for arbitrary tropical varieties.

Along this section we use the notation SK = K[x±1
1 , . . . , x±1

n ] and Sk = k[x±1
1 , . . . , x±1

n ] for the
rings of polynomial en n variables.

Let us start by recalling some concepts from commutative algebra.

Every ideal I in a Noetherian ring S has a primary decomposition, i.e, can be written as

I = Q1 ∩ · · · ∩Qn

where each Qi is primary and no term in the intersection can be remove. This primary decomposi-
tion is not unique in general but each prime ideal

√
Qi is independent of the primary decomposition.

The
√
Qi are called the associated primes of I and the set of all these is denoted by Ass(I). We

also have the set Assmin(I) of minimal elements of Ass(I), this set can also be seen as the set of
minimal prime ideals containing I.

In this context, the multiplicity of a minimal prime Pi ∈ Assmin(I) is the number

mult(Pi, I) := length(A/Qi)Pi = length((I : P∞i )/I)Pi

where length(·) is the length of a SPi-module and

(I : P∞) := {f ∈ S | ∃ m ∈ N such that f ·Mn ⊆ I}

Using this we can introduce the weight of cells.

Definition 3.4.1. Let I be an ideal of K[x±1
1 , . . . , x±1

n ] and let Σ a polyhedral complex with
support |Σ| = Trop(V (I)) such that inw(I) is constant for w ∈ int(σ) ∀σ ∈ Σ (see Remark 3.3.7).
For a top dimensional cell σ ∈ Σ we defined its multiplicity as

mult(σ) =
∑

P∈Assmin(inw(I))

mult(P, inw(I))

for any w ∈ relint(σ) �

This definition coincide with the one we saw for hypersurfaces in the first section.

Proposition 3.4.2. Let f =
∑
cαx

α ∈ K[x±1
1 , . . . , x±1

1 ], ∆ the general subdivision of Newt(f)
induced by (val(cα)) and Σ the dual polyhedral complex supported on Trop(V (f)). Given any
maximal cell σ ∈ Σ, the multiplicity mult(σ) defined above is the lattice length of the edge e(σ) of
∆ dual to σ.

Proof. Fixw in the relative interior of σ. We have inw(〈f〉) = 〈inw(f)〉 and inw(f) =
∑
t−val(cu)cux

u

where the sum goes over those u ∈ e(σ) with val(cu) + w · u = Trop(f)(w). As e(σ) is a seg-
ment we can take v and u such that the exponent of every monomial in inw(f) is of the form
u + kv and hence inw(f) is a Laurent polynomial in the variable y = xv times a monomial in
x1, . . . , xn. After multiplying by a monomial we can assume that inw(f) is a (non-Laurent) poly-
nomial g in y with nonzero constant term and degree the lattice length of the edge e(σ). Hence if
g = (y − c1)α1 · · · · · (y − cr)αr we have

mult(σ) =
∑

P∈Assmin(inw(I))

mult(P, 〈g〉)

=
∑
i

mult(〈y − ci〉, 〈(y − c1)α1 · · · · · (y − cr)αr 〉)

=
∑
i

αi = deg g

and we conclude that the multiplicity of σ is the lattice length of e(σ).

As the general definition of multiplicity is a bit involved we sometimes use the following propo-
sition for understanding it rather than the definition itself.
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Lemma 3.4.3. Let X ⊆ TmK be irreducible of dimension d with ideal I ⊆ K[x±1
1 , . . . , x±1

n ], and let
Σ be a polyhedral complex on Trop(X) as in Remark 3.3.7. Let σ ∈ Σ with affine span parallel to
e1, . . . , ed, and let w ∈ int(σ) ∩ Γnval. If S′ = k[x±1

d+1, . . . , x
±1
n ] then mult(σ) = dimkk(S′/(inw(I) ∩

S′)).

Proof. Since w ∈ int(σ) by Corollary 3.2.11 we have inw+εei(I) = inw(I) for small ε and then
the initial ideal inw(I) is homogeneous with respect to the grading deg(xi) = ei for i ≤ d and
deg(xi) = 0 for i > d. Hence inw(I) has a generating set {f1, . . . , fr} not containing the variables
x1, . . . , xd. Let

⋂s
i=1Qi be a primary decomposition of inw(I). Each Qi can be taken homogeneous

with respect to the same grading and so they are also generated by polynomials in the variables
xd+1, . . . , xn. Hence it’s easy to see that inw(I) ∩ S′ =

⋂s
i=1(Qi ∩ S′) is a primary decomposition

for the zero dimensional ideal inw(I) ∩ S′ and mult(Pi, QI) = mult(Pi ∩ S′, Qi ∩ S′). Hence each
Pi is a minimal prime of inw(I) and we have

mult(σ) =

s∑
i=1

mult(Pi, Qi)

=

s∑
i=1

dimk(S′/(Qi ∩ S′))

= dimk S
′/(inw(I) ∩ S′)

The hypothesis over the affine spane of σ is not so restrictive as any cell can be put in such a
position after a monomial change of coordinates in the torus.

Now we prepare the ground for the proof of the balancing condition. We will reduce the proof
to the case of constant coefficient curves. For this we will use results about zero dimensional ideals.

We use the notation SK = K[x1, . . . , xn] and S̃K = K[x0, . . . , xn] with similar notations for Sk
and S̃k.

Proposition 3.4.4. Let I =
⋂
y Qy ⊆ K[x±1

1 , . . . , x±1
n ] where each Qy is primary and

√
Qy =

Py = 〈x1 − y1, . . . , xn − yn〉. Then

1. For w ∈ Trop(V (I)) let ⋂
y:val(y)=w

Qy

Then the multiplicity of the point w is equal to dimKSK/Iw.

2. Assume further that all y ∈ V (I) ⊆ TnK have the same tropicalization val(y) = w ∈ Γnval.
Then

dimkSk/inw(I) =
∑
y

mult(Py, Qy) = dimKSK/I

Proof. From commutative algebra we know that any zero dimensional ideal I satisfies

dimK SK/I =
∑

y∈V (I)

mult(Py, Qy)

where the I =
⋂
y Qy is a primary decomposition and Py = rad(Qy). Also dimK SK/I =

dimK(S̃K/Iproj)d for d >> 0 where Iproj is the homogenization of I. As these facts also hold
for k and as using Proposition 3.2.10 we have dimK(S̃K/Iproj)d = dimk(S̃k/in(0,w)(Iproj))d then in
order to prove dimK SK/I = dimk Sk/inw(I) it is enough to show

in(0,w)(Iproj)d = (inw(I)proj)d for d >> 0

The inclusion ⊆ follows from Proposition 3.2.17, since J ⊆ (J |x0=|)proj for any homogeneous
ideal J ⊆ k[x0, . . . , xn]. For the other inclusion note that the same Proposition 3.2.17 implies
that inw(I)proj = (in(0,w)(Iproj) :

∏n
i=0 xi). Saturating by the irrelevant ideal 〈x0, . . . , xn〉 does

not change (in(0,w)(Iproj))d for d >> 0 and this saturation has only one-dimensional associated
primes. These associated primes have the form Py′ = 〈y′jxi − y′ixj | 0 ≤ i < j ≤ n〉 for some
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y′ = (y′0 : · · · : y′n) ∈ Pn. Write (in(0,w)(Iproj) : 〈x0, . . . , xn〉∞) =
⋂
y′ Qy′ where Qy′ is primary

with radical Py′ . Now (⋂
Qy′ :

∏
x∞i

)
=
⋂
y′

(Qy′ :
∏

x∞i ) =
⋂

y′:xy /∈Py′

Qy′

so it suffices to show that xi /∈ Py′ for all i and all Qy′ .

Since each primary component Qy of I is Py-primary, it contains (xi − yi)d for some d >> 0.
The product

∏
y(xi − yix0)d is thus in Iproj for d >> 0, and so since val(y) = w for all y, we

have
∏
y(xi − ỹix0)d ∈ in(0,w)(Iproj), where ỹi = t−wiyi. This shows that xi /∈ Py′ for all y′ and

0 ≤ i ≤ n. Indeed, for each i the porduct
∏
y(xi − ỹix0)d ∈ in(0,w)(Iproj), so for each y′ there is ỹi

with xi − ỹix0 ∈ Py′ . If xi ∈ Py′ for some i, then xj ∈ Py′ for 0 ≤ j ≤ n, since each ỹi is nonzero
as yi 6= 0. This contradicts the fact that y′ ∈ Pn, so we conclude that the first claim holds.

For the second part, we claim that inw(I) = inw(I). The inclusion ⊆ is immediate from I ⊆ Iw.
For the other inclusion note that for any y with val(y) 6= w we have w 6= Trop(Qy), so there is
fy ∈ Qy with 1 = inw(f)- Given f ∈ Iw, we then hae g = f

∏
val(y)6=w fy ∈ I with inw(g) = inw(f)-

This gives the other inclusion. The result now follows from the first part using the interpretation
of the multiplicity of Lemma 3.4.3.

Now we proof the case of constant coefficient curves, i.e, curves defined over a field with a
trivial valuation.

Proposition 3.4.5. If C is a curve in Tnk , then the one dimensional fan Trop(C) is balanced.

Proof. Let u1, . . . ,us denote the first lattice points on the rays of Trop(C), letmi = mult(cone(ui))
and set v =

∑s
i=1 ui. We will prove that v = 0 by proving that for any w = (w1, . . . ,wn) ∈ Zn

primitive we have w ·v = 0. By Lemma 3.3.10 there is a change of coordinate sending w to e1 and
by part 1 of Proposition 3.3.9 this change of coordinates doesn’t change the multiplicities. Hence
it is enough to consider w = e1 and then the objective is to prove v1 = 0

Let I = k[x±1
1 , . . . , x±1

n ] be the ideal of C, K ′ the algebraic closure of k(t) and I ′ the extension of
I to K ′[x±1

1 , . . . , x±1
n ]. Also denote CK′ ⊆ TnK′ for the variety of I ′. Note that as k is algebraically

closed, K ′ has residue field k and also that by Remark 3.3.4 we have Trop(C) = Trop(CK′).

Given α ∈ K ′∗ consider the ideal J ′α = I ′ + 〈x1 − α〉. There exists L ∈ N and a finite subset
D ⊂ K ′∗ such that dimK(SK′/J

′
α) = L for all α ∈ K ′∗ \ D. To see this we use the classical

Gröbner basis with respect to any monomial order ≺ in K[x0, . . . , xn]: The initial ideal of (J ′α)proj
is constant outside a finite set D because x1 − α cannot be a zerodivisor on SK′/I ′ for infinitely
many α and the number L is equal to the degree of the Hilbert polynomial of this inital ideal.

Choose α1, α2 ∈ K ′∗\D with val(α1) = 1 and val(α2) = −1. Let X+ = V (I ′+〈x1−α1〉) ⊆ TnK′
and X− = V (I ′ + 〈x1 −α2〉) ⊆ TnK′ . The desired identity v1 = 0 will be obtained by computing L
tropically.

Set β1 = t−1α1 ∈ k∗ and β2 = t1α2 ∈ k∗. From 3.3.16 we can conclude

inw(I ′ + 〈x1 − α1〉) = inw(I ′) + 〈x1 − β1〉 6= 〈1〉 for w ∈ Trop(X+)

inw(I ′ + 〈x1 − α2〉) = inw(I ′) + 〈x1 − β2〉 6= 〈1〉 for w ∈ Trop(X−)

We now focus on α1. Let H = Trop(V (x1 − α1)) = {w ∈ Rn | w1 = 1}. We claim that
Trop(X+) = Trop(C) ∩ H. Indeed, for any w ∈ Trop(C) ∩ H the cone of Trop(C) contain-
ing w in its relative interior is cone(w), so Trop(C) intersects H transversaly at w. Since w
was an arbitrary intersection point, the claim follows from Theorem 3.3.17. We now decompose
I ′ + 〈x1 − α1〉 as

⋂
y Qy, where Qy is Py-primary for y ∈ TnK′ . The y appearing here are precisely

the points of X+. Let X+
w = {y ∈ X+ | val(y) = w}. Note that for w ∈ Trop(X+), we have

inw(
⋂
y∈X+ Qy) = inw(

⋂
y∈X+

w
Qy). The inclusion ⊆ is easy, now for the other inclusion note

that for all y ∈ X+ \ X+
w , there is fy ∈ Qy with inw(fy) = 1. For any g ∈

⋂
y∈X+

w
Qy, we set

g′ =
∏
y∈X+\X+

w
to get inw(g) = inw(g′). Combined with the first of the above equations, this
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gives inw(
⋂
y∈X+

w
Qy) = inw(I ′) + 〈x1 − β1〉.

Now using proposition 3.4.4 we have

dimK′ SK′/

 ⋂
y∈X+

w

Qy

 =
∑
y∈X+

w

mult(Qy, Py) = dimk(Sk/inw(I ′) + 〈x1 − β1〉)

And summing these identities over all w ∈ Trop(X+), we find

L =
∑
y∈X+

mult(Qy, Py) =
∑

w∈Trop(X+)

dimk(Sk/(inw(I ′) + 〈x1 − β1〉))

The same identities hold for X− and β2.

Let uw be the first lattice point on the ray cone(w) of Trop(C). Then λ = (uw)1 satisfies
uw = λw because w1 = 1. We now claim that

λ ·mult(cone(w)) = dimk(Sk/(inw(I) + 〈x1 − β1〉)) (3.8)

This would imply

L =
∑

w∈Trop(X+)

mult(cone(w)) · (uw)1 =
∑

i : (ui)1>0

mi · (ui)1

and similarly L =
∑
i : (ui)1>0−mi · (ui) so we have

u1 =
∑

i : (ui)1>0

mi(ui)1 −
∑

i : (ui)1<0

mi · |(ui)1| = L− L = 0

Thus it remains to prove equation (3.8). For this we consider a change of coordinates taking
x1 to xuw , and thus w to λ−1e1. Then (3.8) becomes λ ·mult(cone(w)) = dimk(Sk/(inλ−1e1(I ′) +
〈xuw−β1〉)). The initial ideal inλ−1e1(I ′) has a generating set that does not contain x1. Since V (I ′)
is a curve by Lemma 3.2.10 the initial ideal is one dimensional, so for each 2 ≤ i ≤ n it contains a
polynomial in k[xi] with constant term one. After dividing by xi, we obtain x−1

i − p′i ∈ inλ−1e1(I ′)

for some p′i ∈ k[xi]. Now 〈xuw − β1〉 = 〈xλ1 − β1x
u′〉, where u′1 = 0 and u′i = −(uw)i for 2 ≤ i ≤ n

this implies inλ−1e1(I ′) + 〈xuw − β1〉 = inλ−1e1(I ′) + 〈xλ1 − f〉 for some f ∈ k[x2, . . . , xn]. We
next use the fact that dimk k[x±1

1 , . . . , x±1
n ]/J = dimk k[x1, . . . , xn]/Jaff for any zero-dimensional

Laurent ideal J . Fix the lexicographic term order x1 � x2 � · · · � xn on k[x1, . . . , xn]. By
Bucherger’s criterion, the initial ideal of (inλ−1e1(I ′) + 〈xλ1 − f〉)aff is generated by xλ1 and the
monomial generators of inlex((inλ−1e1(I ′))aff). The right-hand side of equation 3.8 is λ times the
k-dimension of k[x±1

2 , . . . , x±1
n ]/inλ−1e1(I ′). But, that last k-dimension equals the multiplicity of

cone(w) by Lemma 3.4.3.

With this we can conclude our result.

Theorem 3.4.6 (Balancing condition). Let I be an ideal in K[x±1
1 , . . . , x±1

n ] such that V (I) is
of pure dimension d. If Σ is a polyhedral complex with support Trop(V (I)) such that inw(I) is
constant for w in the relative interior of each cell in Σ. Then Σ is balanced with the weights
defined at 3.4.1.

Proof. Finding a primary decomposition for
√
I we get

√
I =

⋂
Pi were each prime Pi has dimen-

sion d. Then Trop(V (I)) =
⋃

Trop(V (Pi)) and by Theorem 3.3.14 it is a Trop(V (I)) has pure
dimension.

Fix a (d− 1)-dimensional cell τ ∈ Σ then by Lemma 3.3.10 and by part 1 of proposition 3.3.9,
after a change of coordinates, the affine span of τ is a translate of the span of e1, . . . , ed−1. Fix
w ∈ int(τ). As inei(inw(I)) = inw(I) for 1 ≤ i < d we have that inw(I) is homogeneous with
respect to the Zd−1 grading given by deg(xi) = ei for 1 ≤ i < d, and deg(xi) = 0 for i ≥ d. This
implies that inw(I) has a generating set in which x1, . . . , xd−1 do not appear.

Let J = inw∩k[x±1
d , . . . , x±1

n ]. By Lemma 3.3.8 the tropical variety Trop(V (inw(I))) is the star
of τ in Σ which has lineality space spanned by e1, . . . , ed−1. Since inv(inw(I))∩ k[x±1

d , . . . , x±1
n ] =
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inv̄(J) for v̄ the projection of v onto the last n − d + 1 coordinates. As Trop(V (I)) has pure
dimension d we have that Trop(V (J)) is one dimensional.

Let P1, . . . , Pr be the minimal associated primes of J . Then V (J) =
⋃
V (Pi) so

Trop(V (J)) = cl(val(y) | y ∈ V (J)) =

r⋃
i=1

cl(val(y) | y ∈ V (Pi)) =

r⋃
i=1

Trop(V (Pi))

By theorem 3.3.14 we have dim(Pi) ≤ 1 and at least one index i satisfies dim(Pi) = 1. Thus
dim(V (J)) = 1.

Suppose v ∈ Qn satisfies w+εv ∈ σ for all sufficiently small ε > 0, where σ is a maximal cell of
Σ that has τ as a facet. The equality inv(inw(I)) = Trop(V (J)) together with Lemma 3.4.3 imply
that the multiplicity of the cone cone(v̄) in Trop(V (J)) is equal to the multiplicity of σinTrop(X).
Thus, showing that Σ is balanced at τ is exactly the same as showing that Trop(V (J)) is balanced
at 0. But this follows from Proposition 3.4.5 above.
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Appendix A

Overview on Polyhedral Geometry

Here we collect the notions from polyhedral geometry that are needed along this document. We
will refer to [Zie95] for the proofs.

A polyhedron P ⊆ Rn is a intersection of finitely many closed half-spaces

P = {v ∈ Rn | 〈v, xi〉 ≥ ri ∀ i = 1, . . . , k} (A.1)

as intersection of convex sets is convex any polyhedron is a convex set.

Let Γ be an additive subgroup of R. Then the polyhedron P in (A.1) is said to be Γ-rational
if each xi can be taken defined over Q and each ri can be taken in Γ.

When P is bounded we say that it is a polytope. We can described polytopes in an alternative
way.

Proposition A.1. For a subset P ⊆ Rn the following are equivalent:

• P is a polytope.

• There are v1, . . . , vk ∈ Rn such that

P =conv(v1, . . . , vk)

:={λ1v1 + · · ·+ λkvk ∈ Rn | λi ∈ R≥0 and λ1 + · · ·+ λk = 1}

Proof. See section 1.1 in [Zie95].

Given y ∈ (Rn)∗ we define the face of the polyhedron P determined by y as

facey(σ) = {v ∈ σ | 〈v, y〉 ≤ 〈w, y〉 ∀w ∈ σ}

when this set is non empty. In other words, the set of all elements of σ in which y attains its
minimum. Notice that this set do can be empty if P is unbounded and y is not bounded there. A
face of P that is not contained in any larger proper face is called facet.

The dimension of P is the dimension of its affine span and the relative interior of P denoted
by int(P ) is its interior computed inside its affine span. The linear space parallel to P is the
translation of the affine span of P to the origin.

Definition A.2. A polyhedral complex is a collection Σ of polyhedra satisfying two conditions:

• If P is in Σ then so is any face of P .

• If P and Q are in Σ then P ∩Q is either empty or a face of both P and Q.

�
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The element of Σ are called cells and the maximal cells are called facets. If every facet has
dimension d then Σ is called of pure dimension d. The support of Σ is the set |Σ| =

⋃
P∈Σ P . The

k-skeleton of Σ is the polyhedral complex consisting of all cells σ ∈ Σ with dim(σ) ≤ k.

Now we introduce polyhedral cones, for this we need the following result

Proposition A.3. For a subset σ ⊆ Rn the following conditions are equivalent:

• There are linear functionals x1, ..., xk ∈ (Rn)∗ defined over Z such that

σ = {v ∈ Rn | 〈v, xi〉 ≥ 0 ∀ 1 ≤ i ≤ k}

• There are vectors v1, ..., vk ∈ Zn such that

σ = {λ1v1 + · · ·+ λkvk ∈ Rn | λi ∈ R≥0 ∀ 1 ≤ i ≤ k}

Proof. See section 1.1 in [Zie95].

If any of this conditions is satisfied we say that σ is a convex rational polyhedral cone in Rn or
simple a cone if there is no risk of confusion. In the case of the second condition we will write

σ = cone(v1, . . . , vk)

Now given a cone σ we define its dual cone by

σ∨ := {x ∈ (Rn)∗ | 〈v, x〉 ≥ 0 ∀v ∈ σ}

If σ = cone(v1, . . . , vk) then we have σ∨ = {x ∈ (Rn)∗ | 〈vi, x〉 ≥ 0 ∀ 1 ≤ i ≤ k} and by
Proposition A.3 we see that σ∨ is a rational polyhedral cone in (Rn)∗ and (σ∨)∨ = σ.

As cones are particular cases of polyhedrons we have the definition of dimension, face, facet
and relative interior of a cone.

A cone σ ⊆ Rn is of maximal dimension if it is not contained in any proper subspace of Rn. In
the other hand, a cone is said to be strictly convex if it does not contain any non trivial subspace
of Rn. As

V ⊆ σ ⇐⇒ V ⊥ ⊇ σ∨

we see that σ is strictly convex if and only if σ∨ is of maximal dimension.

Given y ∈ (Rn)∗ we have

facey(σ) is not empty ⇐⇒ y attains its minimum in σ
⇐⇒ y is non-negative over σ
⇐⇒ y ∈ σ∨

So faces of σ are given exactly by

facey(σ) = {v ∈ σ | 〈v, y〉 = 0}

for y an element of the dual. If we now generators for the dual cone finding the faces is easier.

Proposition A.4. If σ = {v ∈ (Rn)∗ | 〈v, xi〉 ≥ 0 ∀ i = 1, . . . , k}, i.e, σ∨ = cone(x1, . . . , xk).
Then all the faces of σ are of the form

τ = {v ∈ σ | 〈v, xi〉 ≥ 0 ∀i ∈ I}

for some I ⊆ {1, . . . , k}.

Given a cone σ ⊂ Rn we define its orthogonal vector space as

σ⊥ = {x ∈ (Rn)∗ | 〈v, x〉 = 0 ∀ v ∈ σ}

Using this we can state
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Proposition A.5. There is an order reversing correspondence between faces of σ and faces of σ⊥
in which the face τ ⊆ σ correspond to the face σ∨ ∩ τ .

Proof. See [?].

A cone σ is called simplicial if it is of the form σ = cone(v1, . . . , vk) for some linearly indepen-
dent vectors v1, . . . , vn.

A cone σ is called smooth if it is of the form σ = cone(v1, . . . , vk) for some integral vec-
tors that can be extended to an integral basis {v1, . . . , vk, vk+1, . . . , vn} of the lattice Zn, i.e,
det(v1, . . . , vn) = ±1.

Now we introduce the analogue of a polyhedral complex for cones.

Definition A.6. A fan is a finite collection Σ of strictly convex rational polyhedral cones in Rn
such that:

• If τ is a face of σ and σ ∈ Σ then τ ∈ Σ.

• For all σ, τ ∈ Σ we have that σ ∩ τ is a face of both σ and τ

�

As every fan is also a polyhedral complex we have the notions of facet, pure dimension, support
and k-skeleton for fans. We say that a fan is smooth (resp. simplicial) if each one of its cones is
smooth (resp. simplicial) and it is complete if its support is the whole Rn.

Now we introduce two diferent kind of fans contructed from polyhedra.

Definition A.7. Given a polyhedron P ⊆ Rn the normal fan of P is the fan NP in (Rn)∗ given
by the cones

NP (F ) = cl(w ∈ (Rn)∗ | facew(P ) = F )

where cl(·) denotes the topological closure in (Rn)∗. Here NP (F ) is exactly the inner normal
cone of the face F . �

Definition A.8. Given a polyhedral complex Σ in Rn and a cell P ∈ Σ we define the star of P
in Σ, denoted by starΣ(P ), as the fan in Rn consisting of all the cones

σQ = {λ(x− y) | λ ≥ 0, x ∈ Q, y ∈ P }

for each Q ∈ Σ containing P as a face. Visually σQ is the union of all rays with origin a point of
P and looking in the direction of a point in Q. If P is a maximal cell then starΣ(P ) is the affine
span of P . �

We end this chapter by describing the concept of regular subdivision of a polytope.

Definition A.9. Let P = conv(v1, ..., vr) be a polytope in Rn and fix a weight vector w =
(w1, . . . , wr) ∈ Rr. The regular subdivision of P induced by w is a polyhedral complex with
support P defined in the following way.

Define ui = (vi, 1) ∈ Rn+1 and identify conv(u1, . . . , ur) with P . Now the polytopes on the
polyhedral complex are conv{ui | i ∈ I} for the subsets I ⊂ {1, . . . , r} such that there exists
c ∈ Rn+1 with

c · ui = wi for i ∈ I and c · ui < wi for i /∈ I
�

The regular subdivision also has the following geometric description. In the context of the
definition above consider the polyhedra

Pw = cone{(vi, r) | r ≥ wi and 1 ≤ i ≤ r} ⊆ Rn+1

then the polytopes in the regular subdivision are the projection of the bounded faces of Pw to the
plane Rn × {1}.

To check this fix a face F = cone{(vi, wi) | i ∈ I} of Pw and take a vector (c, 1) such that
face(c,1)(Pw) = F . Then we have that there is c0 such that (c, 1) · (vi, wi) ≥ 0 for all i with
equality exactly when i ∈ σ and the projection of the face to the plane Rn × {1} is exactly
cone{(vi, 1) | u ∈ I}.
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