
Higher Rank Tropical, Polyhedral and Analytic
Geometry.

Hernan Iriarte

Supervisors: Omid Amini and Marco Maculan
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Introduction



The Tropical Approach

The tropical approach to algebraic geometry initiated in the 90s consist in the
use of valuations to transform polynomial problems depending in the operations
+ and × into piecewise linear problems depending on the operations + and min.

Figure: An elliptic curve and its tropical counterpart.

This thesis is inspired by two applications of the tropical approach:

1 The study of degenerations of algebraic varieties.

2 The asymptotic study of polarizations of algebraic varieties.
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Valuations

Let K be a field and Γ an ordered abelian group. A valuation is a map

ν : K∗ → Γ

satisfying

1 ν(fg) = ν(f ) + ν(g)

2 ν(f + g) ≥ min{ν(f ), ν(g)}

Although the inequality in (2) can be strict, it is actually a equality in most
instances.
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Degenerations of Algebraic Varieties

Consider a family of algebraic curves parametrized by a variable t ∈ C∗.

Et = {t3x3 + x2y + xy2 + t3y + x2 + t−1xy + y2 + x + y + t3 = 0}

What is the behaviour of the family when t approaches 0?

We can think of the family Et as a single curve defined over the field C(t). This
is a valued field under the valuation

ν :
∑
n∈N

ant
n → min{n ∈ N | an ̸= 0}.

Which we can use to tropicalize the polynomials above

min{3 + 3x , 2x + y , x + 2y , 3 + y , 2x ,−1 + x + y , 2y , x , y , 3}

The zeros of this polynomial encode the behaviour of the family around 0.
What happens if we take families over more parameters?
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Okounkov Bodies and Asymptotic of Polarizations

Let X be a projective variety over C and E ⊆ X a divisor. Moreover, suppose
that we have a valuation defined over its function field ν : K (X ) → Rd .

With the aim of study the asymptotic behaviour of the spaces

H0(nE ) = {f ∈ K (X ) | div(f ) + nE ≥ 0}

we consider the following set

∆ν(E ) =
⋃
n≥1

{
ν(f )

n

∣∣∣∣ f ∈ H0(nE ) \ {0}
}
.

This is a closed subset of Rd .

As 1
2

(
ν(f )
n + ν(g)

n

)
= ν(fg)

2n it is a convex body.

We call ∆ν(E ) the Okounkov body of E with respect to ν.



Okounkov Bodies and Asymptotic of Polarizations

Let X be a projective variety over C and E ⊆ X a divisor. Moreover, suppose
that we have a valuation defined over its function field ν : K (X ) → Rd .

With the aim of study the asymptotic behaviour of the spaces

H0(nE ) = {f ∈ K (X ) | div(f ) + nE ≥ 0}

we consider the following set

∆ν(E ) =
⋃
n≥1

{
ν(f )

n

∣∣∣∣ f ∈ H0(nE ) \ {0}
}
.

This is a closed subset of Rd .

As 1
2

(
ν(f )
n + ν(g)

n

)
= ν(fg)

2n it is a convex body.

We call ∆ν(E ) the Okounkov body of E with respect to ν.



Okounkov Bodies and Asymptotic of Polarizations

We know that, for any large n, the dimension dimC H0(nE ) is a polynomial
function on the variable n called the Hilbert polynomial HE of E .

Surprisingly, the geometry of the Okounkov body is linked to the Hilbert
polynomial.

Theorem (Lazarfeld-Mustata 08’, Kaveh-Khovanskii 09’)

If the valuation ν comes from a flag of subvarieties, then:

1 degHE = dim∆ν(E )

2 If E is big. Leading coefficient of HE = Vol(∆ν(E ))

This statement give us plenty of liberty to choose ν.

→ What can we say about the function ν 7→ ∆ν(E )?

→ Is it continuous?
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Variation of Okounkov Bodies

Understanding ∆ν(E ) as ν changes is an open project with many challenges.

1 Find the right setting for the variation: Spaces of Valuations

2 Understand the continuity: Mutations

3 Find the hidden information: Canonical Measures

In the following we will describe some developments in the direction of the first
question.
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Spaces of Valuations

What can be the domain of the map ν 7→ ∆ν(E )?

Riemann-Zariski space

Huber Analytification (Adic Spaces)

Berkovich Analytification

The valuative tree



Analytic Geometry of Higher
Rank



Monomial Valuations

Consider X = A2 = Spec C[x , y ] and fix α, β ∈ R≥0. Then, the map

να,β : C[x , y ] −→ R∑
i,j≥0

aijx
iy j 7−→ min{iα+ jβ | aij ̸= 0}

extends to a valuation in K (X ).

Example: If α = 1, β = 2 and f (x , y) = x2 + 4xy + 2y then

ν(f ) = min{2α, α+ β, β} = 2

x

y
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Quasi-monomial valuations

Let X be a variety and D =
∑r

i=1 Di a SNC divisor.

D1D2

D3

X

We can take local equations for each Di to define monomial-like valuations.

Example: If X is a surface, D1 = V (x) and D2 = V (y) locally around their
intersection p. Then, by the transversality

ÔX ,p
∼= C[[x , y ]].

So, given α, β ∈ R≥0 we can consider να,β defined by

να,β

∑
ij

aijx
iy j

 := min{iα+ jβ | aij ̸= 0}.

M (D) := set of all quasi-monomial
valuations w.r.t D.
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Dual Cone Complex

Given an SNC divisor D =
∑r

i=1 Di , we can construct a cone complex by

1 Taking one ray for each Di

2 Taking one face for each intersection of D ′i s.

Σ(D) = Dual cone complex of D

Example:
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Monomial Valuations Geometrically

Putting coordinates on each cone of Σ(D) gives the equality

M (D) ∼= Σ(D)

So geometrically, the monomial valuations defined in terms of D with weights in
R≥0 are parametrized by the dual complex!

Now, by changing the weights to (Rk)≥lex0 with its lexicographic order, we can
construct monomial valuations of higher rank. Let us denote by M k(D) the set
of all such valuations.

→ Is there any way to relate M k(D) geometrically to the dual cone complex
Σ(D)?

Answer: Yes, they are given by tangent directions in Σ(D).



Tropicalization of rational functions

Given f ∈ K (X ) we define its tropicalization with respect to D as the map

trop(f ) : Σ(D) −→ R
p 7−→ νp(f ).

In terms of coordinates, if f =
∑
ij

aijx
iy j then

trop(f )(x , y) = min
i,j

{ix + jy | aij ̸= 0}.

Notice that trop(f ) is continuous and piecewise linear.

trop(f )

Theorem 1. Approximation Theorem (Amini - I ’20/’21)

Any continuous piecewise linear function in Σ(D) is the tropicalization of some
rational function.



Tangent Cone Bundles

Given a polyhedral complex Σ, we define its tangent cone bundle of order k,
denoted by TCk Σ as the set of all elements (x ;w1, . . . ,wk−1) such that:

1 x ∈ Σ

2

3

4



Tangent Cone Bundles

Given a polyhedral complex Σ, we define its tangent cone bundle of order k,
denoted by TCk Σ as the set of all elements (x ;w1, . . . ,wk−1) such that:

1 x ∈ Σ

2 x + εw1 ∈ Σ for ε > 0 small.

3

4

not belongs to TCΣ



Tangent Cone Bundles

Given a polyhedral complex Σ, we define its tangent cone bundle of order k,
denoted by TCk Σ as the set of all elements (x ;w1, . . . ,wk−1) such that:

1 x ∈ Σ

2 x + εw1 ∈ Σ for ε > 0 small.

3 x + ε1w1 + ε2w2 ∈ Σ for ε1 > 0 small and ε2 > 0 small w.r.t ε2.

4 ....

not belongs to TC 2Σ

not belongs to TC 2Σ



Partial Derivative Operators

With respect to each element (x ;w) ∈ TCk Σ(D), we consider a partial
derivative operator acting on tropical functions over Σ(D). It is defined
inductively as follows

Dw1F (x) = lim
h→0

F (x + hw1)− F (x)

h

Dw1,w2F (x) = lim
h→0

Dw1+hw2F (x)− Dw2F (x)

h
...

Dw1,...,wk
F (x) =

Dw1,...,wk−1+hwk
F (x)− Dw2F (x)

h



Duality Theorem

Theorem 2, Duality Theorem (Amini - I ’20-’21)

There is an isomorphism of bundles over M (D) ≃ Σ(D)

M k(D) TCk−1 Σ(D)

M (D) Σ(D)

≃

≃

where (x ;w) ∈ TCk−1 Σ(D) corresponds to the valuation

ν(x ;w)(f ) = (trop(f )(x),Dw1 trop(f ), . . . ,Dw trop(f )(x))

which is a monomial valuation with respect to the weights

(x ;w)T = (α1, . . . , αk) ∈ (Rk)≥lex0.



Tropical Topology and Variations of Okounkov Bodies

We introduce the Tropical topology as the smallest topology of TCk Σ(D)
making all the evaluations maps (x ;w) 7→ νx ;w (f ) continuous for all f ∈ K (X ),
where in Rk we put its Euclidean topology.

This is second countable topology finer than the Euclidean topology on
TCk Σ(D), which is not locally-compact in general. Although it is different from
the Euclidean topology, they share the same dense sets.

Conjecture

For a big divisor E of X , the variation of Okounkov bodies ν 7→ ∆ν is
continuous if we choose as domain TCk−1 Σ(D).



Space of all Valuations

Given a variety X it’s birrational analytification of bounded rank k is the set

X bir := {ν : K (X )∗ → Rk | ν is a valuation}

together with the initial topology given by evaluations where in Rk we put the
Euclidean topology. We consider two subsets Xℶ· and Xℸ· of all valuations with
center inside and respectively outside X .

The inclusion TCk−1 Σ(D) → X bir is continuous and it has a retraction

rD : Xℶ· −→ TCk−1 Σ(D).

→ The continuity turns out to be not obvious because the lexicographic order
is not compatible with the Euclidean topology.



Log-smooth Pairs and Compactifications

A log-smooth pair (Y ,D) over X is a variety Y together with a proper
birrational morphism φ : Y 99K X such that

φ|Y\DY \ D ∼−→ X \ f (D)

is an isomorphism.

A log-smooth compactification of X is a variety Y containing X as an open
subvariety such that Y \ X is an SNC divisor on Y .

There are natural notions of morphism between log-smooth pairs and between
log-smooth compactifications giving us the categories LSPX and LSCX

respectively.



Limit Formulae

Theorem 3. Limit Formula (Amini - I, ’20-’21)

For a log-smooth pair (Y ,D) and a log-smooth compactifications Y there are
retractions

r(Y ,D) : TCk−1(Y ,D) −→ Xℶ·

rY : TCk−1(Y ,Y \ X ) −→ Xℸ·

Wich are compatible and produce isomorphisms

lim←−
Y∈LSPX

TCk−1(Y ,D)
∼−→ Xℶ·

lim←−
Y∈LSCX

TCk−1(Y ,Y \ X )
∼−→ Xℸ·



Polyhedral Geometry of
Higher Rank



Higher Rank Generalizations

The theory just seen can be regarded as a higher rank version of Thuiller’s
tropicalization of toroidal varieties.

But what about higher rank versions of other instances of tropical geometry?

In the following, We present a theory of polyhedral geometry suitable for this
generalizations and some applications.
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The Ring of Generalized Dual Numbers

We work with D = R[ε]/(εk) which is an ordered ring under the lexicographic
order, elements of D have the form

x = x (0) + εx (1) + · · ·+ εk−1x (k−1).

A polyhedra in Dn is a set of the form

P = {x ∈ Dn | f1(x) ≥ 0, . . . , fr (x) ≥ 0}

where

fi : Dn −→ D
x 7−→ ⟨yi , x⟩+ ai

are affine function with yi ∈ Dn and ai ∈ D. If each ai = 0 we call P a
polyhedral cone.
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Examples

Let us fix k = 2.

1 P = {x ∈ D | 0 ≤ x ≤ 1} : In this case x has the form x (0) + εx (1). If we
study the restriction on x (0) first and then on x (1) we obtain the fibration

0 1

0
0

2 P = {(x , y) ∈ D2 | x ≥ 0, y ≥ 0} : Similarly as above
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Real polyhedron and base change to D

Theorem 4. Base change to D (I, ’21)

Consider the real polyhedron

P = {x ∈ Rn | f1(x) ≥ 0, . . . , fr (x) ≥ 0}

with fi : Rn → R affine. If we interpret this inequalities over D we obtain

TCk−1 P = {x ∈ Dn | f1(x) ≥ 0, . . . , fr (x) ≥ 0}.

This analog to the equality X
(

K [ε]
(ε2)

)
= TX (K ) for an algebraic variety X over

K in algebraic geometry.



Faces

Let P ⊆ Dn be a polyhedron, a face of P is a subset of P which can be obtained
as the minimizing set of a linear function over P.

Remark: In general, it is not true that if a linear function is bounded below over
P it achieves its minimum on P. As f (x) = 1− εx which is bounded in {x ≥ 0}
and does not achieves its minimum.

Example: The faces of P = {x ∈ D | x ≥ 0, x ≤ 1} are P, the empty set and

0

0

1

0

0

0

1

0
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Higher Rank Farkas’ Lemma

Theorem 5. Higher Rank Farkas’ Lemma (I. ’21)

For a polyhedron

P = {x ∈ Dn | f1(x) ≥ 0, . . . , fr (x) ≥ 0}.

Any affine function achieving its minimum over P can be written in the form

f = λ1f1 + · · ·+ λr fr +min
P

f

for some λ1, . . . , λr ∈ D≥0.

As a corollary, any face of P is of the form

F = P ∩ {x ∈ Dn | εαi fi (x) = 0,∀i}
for some αi ∈ {0, 1, . . . , k}.
The proof of Farkas’ Lemma relays on a Higher Rank version of the
Fourier-Motzkin elimination algorithm to reduce the number of variables on a
system of linear inequalities.
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The Normal Fan

Consider the set

|NF(P)| = {y ∈ Dn | min
x∈P

⟨y , x⟩exists}.

Then, each element y ∈ |NF(P)| defines a face

facey P = arg.minx∈P⟨y , x⟩.

Theorem 6. Normal Fan Duality

The map

|NF(P)| −→ Faces of P

y 7−→ facey P

is locally constant along a fan NF(P) supported on |NF(P)| called the Normal
Fan of P.
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Higher Rank Minkowski’s Theorem

Over |NF(P)| we have the support function

hP : |NF(P)| −→ D
y 7−→ min

x∈P
⟨y , x⟩

Theorem 7. Higher Rank Minkowski’s Theorem (I. 21)

1 The map P 7→ (|NF(P)|, hp) gives a bijection between

{Polyhedra with convex normal fan} ↔
{

Polyhedral cones endowed with
piecewise linear concave functions.

}
Remark: In general, |NF(P)| is not convex.

2 The bijection restricts to a bijection

{Polytopes in Dn} ↔ {Piecewise linear concave functions Dn → Dn}.
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Over |NF(P)| we have the support function

hP : |NF(P)| −→ D
y 7−→ min

x∈P
⟨y , x⟩

Theorem 7. Higher Rank Minkowski’s Theorem (I. 21)

1 The map P 7→ (|NF(P)|, hp) gives a bijection between

{Polyhedra with convex normal fan} ↔
{

Polyhedral cones endowed with
piecewise linear concave functions.

}
Remark: In general, |NF(P)| is not convex.

2 The bijection restricts to a bijection

{Polytopes in Dn} ↔ {Piecewise linear concave functions Dn → Dn}.



Some characterizations of polyhedra

Theorem 8. Characterization of Polytopes and Minkowski-Weil decompositions

1 For a polyhedron P, the set |NF(P)| is convex iff P admits a
Minkoski-Weyl decomposition

P = Q + C with Q a polytope and C a polyhedral cone.

2 A polyhedron is a polytope if and only if any linear function achieves its
minimum on it.



Tropical Geometry of Higher
Rank



Tropical Geometry

We consider the Tropical Semifield of rank k

Tk = (D ∪ {∞},+,min).

A tropical Laurent polynomial is an expression of the form

f = “
∑
m∈Zn

amT
m ” ∈ Tk [T

±
1 , . . . ,T±n ]

with finite support, where “ ” means we are using tropical operations, that is,
+ instead of multiplication and min instead of addition.
A polynomial f = “

∑
m∈Zn amT

m ” ∈ T[T±1 , . . . ,T±n ] induce a function

f : Dn −→ D
x 7−→ min

m∈Zn
{⟨m , x⟩+ am}.



Tropical Geometry

A zero of f is an element x ∈ Dn for which the minimum is achieved at least
twice.
The tropical hypersurface defined by f is the set V (f ) of all zeros of f .

Example: Let us suppose k = 1, if
f = “4x2y2 + 4x2y + 4xy2 + 0xy + 2x + 2y + 4” then V (f ) equals

How to determine the drawing we get?

→ Brute force (or polymake).

→ Use the hypersurface duality theorem.
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How to determine the drawing we get?

→ Brute force (or polymake).

→ Use the hypersurface duality theorem.



Hypersurface Duality in Rank 1

Hypersurface Duality Theorem

We can obtain the shape of V (f ) as follows:

1 Draw New(f ) = convR(Supp(f )) the Newton polytope of f .

2 Subdivide New(f ) with respect to the coefficients of f .

3 V (f ) is a polyhedral complex whose cells are dual to this subdivision
followed by a rotation by 180° degrees.

In particular, this result gives us a duality between tropical hypersurfaces and
regular subdivisions of lattice polytopes.



Example

If f = “4x2y2 + 4x2y + 4xy2 + 0xy + 2x + 2y + 4” then, the subdivision ∆(f )
of New(f ) looks like

∆(f ) =

If we do a point reflection of it we get

180◦

.

Hence, the shape of the tropical hypersurface in this case is

.



Higher Rank Hypersurface Duality

Theorem (Higher Rank Hypersurface Duality I. ’21)

1 V (f ) is a locally constant iterated fibration of rank one tropical
hypersurfaces.

2 The geometry of this fibration can be totally described in terms of a layered
subdivision of New(f ).

3 V (f ) can be endowed with a polyhedral structure over D compatible with
the duality above.



Example of the Higher Rank Hypersurface Duality

Consider k = 3, M = Z2 and the polynomial

f (x , y) = (0, 1, 2) + (0, 1, 1)x + (0, 1, 1)y + (0, 1, 2)xy + (0, 0, 0)x2 + (0, 0, 0)y2

The Newton polytope of f is New f = convR((0, 0), (2, 0), (0, 2)) and its
associated layered subdivision is the following:

∆ =︸ ︷︷ ︸
∆1

︸ ︷︷ ︸
∆2

︸ ︷︷ ︸
∆3

After a point reflection it becomes

Therefore, the base of the fibration V (f [1]) has the shape



Example of Higher Rank Hypersurface Duality

And over each point of the base, there are 4 possible shapes for the fibers of
V (f [2]), represented in the following diagram:

Moreover, each of these fibers is the base for a fibration determined by V (f [3]).
As an example, the fiber corresponding to the subdivision of the square is:



Some Concluding Slogans

1 The tropical analog of higher rank valuations on algebraic varieties are
partial derivative operators.

2 Higher rank analytifications can be approximated in terms of polyhedra of
higher rank.

3 There is a consistent theory of polyhedral geometry over the ring
D = R[ε]/(εk) which help us work with valuations of higher rank.

4 Higher rank objects are fibered and their combinatorics can be understood
in terms of a layering.

5 There duality between tropical hypersurfaces and regular subdivisions can
be extended to a duality between higher rank tropical hypersurfaces and
layered regular subdivisions.
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